期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Assessment of Axial Power Peaking Factors in GHARR-1 LEU Core: A Decadal Simulation Analysis
1
作者 Emmanuel Kwame Ahiave Emmanuel Ampomah-Amoako +1 位作者 Rex Gyeabour Abrefah Mathew Asamoah 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期72-85,共14页
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the... This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy. 展开更多
关键词 GHARR-1 Power Peaking Factor Nuclear Reactor Safety low Enriched uranium Core Operational Longevity Thermal Hydraulics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部