期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC 被引量:1
1
作者 刘玉柱 李炳生 张莉 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期40-43,共4页
Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The (0001)-oriented 6H-SiC wafers are implanted with 15keV helium ions at a dose of 1×10^17 cm^-2 at room temp... Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The (0001)-oriented 6H-SiC wafers are implanted with 15keV helium ions at a dose of 1×10^17 cm^-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473K for 30rain. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealingabides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236eV. 展开更多
关键词 High-Temperature Annealing Induced He Bubble evolution in low Energy He Ion Implanted 6H-SiC HRTEM
下载PDF
Evolution of Al2O3 inclusions by cerium treatment in low carbon high manganese steel 被引量:19
2
作者 Hao Li Yan-chong Yu +2 位作者 Xiang Ren Shao-hua Zhang She-bin Wang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第9期925-934,共10页
The influence of cerium(Ce)treatment on the morphologies,size and distributions of Al_2O_3 inclusions in low carbon high manganese steel was investigated by OM,SEM-EDS and theoretical calculation.The results showed ... The influence of cerium(Ce)treatment on the morphologies,size and distributions of Al_2O_3 inclusions in low carbon high manganese steel was investigated by OM,SEM-EDS and theoretical calculation.The results showed that Ce can modify the morphologies and types of Al_2O_3 inclusions.After Ce treatment,the irregular Al_2O_3 inclusions were replaced by smaller and dispersive spherical cerium oxysulfides.The effects of treatment time and Ce content on the evolution of Al_2O_3 inclusions were examined.It indicated that Al_2O_3 inclusions were wrapped by rare earth inclusions to form a ring like shape Ce-enriched band around the inclusions.Model was established to elucidate the evolution mechanism of Al_2O_3 inclusions.Evolution kinetics of inclusions was discussed qualitatively to analyze the velocity controlled step.It was found that diffusion of Ce^(3+)and Al^(3+)in solid inclusion core and the formed intermediate layer would be the limited step during the evolution process. 展开更多
关键词 low carbon high manganese steel Inclusion Cerium treatment evolution mechanism Transferring kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部