Low field NMR technique was applied to investigate the hydration of cement pastes with different water to cement ratios or addition of superplasticizer. As a nondestructive method, this technique can be used to monito...Low field NMR technique was applied to investigate the hydration of cement pastes with different water to cement ratios or addition of superplasticizer. As a nondestructive method, this technique can be used to monitor the hydration kinetics process by following the changes of longitudinal relaxation time (T1) of water constrained in the pastes. The experimental results indicate that the T1 distributions of water in the fresh paste normally exhibite bimodal distribution, where the large peak is corresponding to the free water while the small one is contributed by the water stored in the flocculations. Time dependence of the weighted average T1 has a good agreement with the hydration process and could be divided into four stages, i e, initial period, dormant period, accelerated period and steady period. The hydration mechanism of each stage was described based on the theory of cement chemistry. In addition, the total signal intensity, which is proportional to the content of the physically bound water in the samples, decrease successively during the hydration reflecting the consumption of physically bound water by hydration reactions.展开更多
Development of microstructure of early cement paste (0-6 h) was investigated with 1H low- field NMR. It was found that T2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks...Development of microstructure of early cement paste (0-6 h) was investigated with 1H low- field NMR. It was found that T2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were 'long component' and 'short component'. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T2 distribution gradually moved to the left and T2 of long component and initial fluidity were linearly correlated.展开更多
Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks we...Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.展开更多
To evaluate the molecular dynamics and the molecular regions presented in the cinnamon types it was chosen to evaluate them without any treatment, and for that it was used low-field nuclear magnetic resonance (NMR) th...To evaluate the molecular dynamics and the molecular regions presented in the cinnamon types it was chosen to evaluate them without any treatment, and for that it was used low-field nuclear magnetic resonance (NMR) through the pulse sequence such as MSE-FID, an NMR sequence in the time domain, and from the longitudinal relaxation time (with a time constant T1), employing the inversion-recovery pulse sequence. The low-field NMR results indicate that the techniques chosen were a very good alternative to evaluate these types of samples food and their structural organization according to their constituents. The molecular mobility is different.展开更多
该文对不同发酵阶段的黄酒样品进行低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)检测,比较了陈酿时间、酒精度和品牌对黄酒低场核磁弛豫特性的影响,最后对9个品牌黄酒的LF-NMR弛豫信息进行了主成分分析。结果表明,发酵...该文对不同发酵阶段的黄酒样品进行低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)检测,比较了陈酿时间、酒精度和品牌对黄酒低场核磁弛豫特性的影响,最后对9个品牌黄酒的LF-NMR弛豫信息进行了主成分分析。结果表明,发酵后样品的单组分弛豫时间(T_(2W))显著缩短,而陈酿后黄酒的T_(2W)又相对延长。多组分弛豫图谱(T_(2))表明,对照组和浸米样品均只有1个峰。发酵后样品的T_(2)图谱均出现2个峰。从第一次发酵到煎酒期间,T_(21)和T_(22)不断缩短,而陈酿期间T_(21)和T_(22)相对延长。同一品牌及陈酿时间的黄酒,酒精度越大,体系的T_(2W),T_(21)和T_(22)越短;同一品牌及酒精度下,陈酿时间仅对T_(21)有一定影响。不同品牌黄酒因酿造工艺的区别而使弛豫分布有一定特点。主成分分析表明,不同酒精度、陈酿时间、品牌及种类的黄酒的弛豫特性的PCA分布及间距不同。说明应用LF-NMR技术可实现对不同工艺生产的黄酒的快速辨别。展开更多
基金Funded by the Major State Basic Research Development Program of China(‘973’ Program) (No. 2009CB623105)
文摘Low field NMR technique was applied to investigate the hydration of cement pastes with different water to cement ratios or addition of superplasticizer. As a nondestructive method, this technique can be used to monitor the hydration kinetics process by following the changes of longitudinal relaxation time (T1) of water constrained in the pastes. The experimental results indicate that the T1 distributions of water in the fresh paste normally exhibite bimodal distribution, where the large peak is corresponding to the free water while the small one is contributed by the water stored in the flocculations. Time dependence of the weighted average T1 has a good agreement with the hydration process and could be divided into four stages, i e, initial period, dormant period, accelerated period and steady period. The hydration mechanism of each stage was described based on the theory of cement chemistry. In addition, the total signal intensity, which is proportional to the content of the physically bound water in the samples, decrease successively during the hydration reflecting the consumption of physically bound water by hydration reactions.
基金Funded by the National Natural Science Foundation of China (No. 51178339), and the National Basic Research Program (No. 2009CB623104-5)
文摘Development of microstructure of early cement paste (0-6 h) was investigated with 1H low- field NMR. It was found that T2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were 'long component' and 'short component'. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T2 distribution gradually moved to the left and T2 of long component and initial fluidity were linearly correlated.
基金Funded by the National Natural Science Foundation of China(No.51178339)the National Basic Research Program(No.2009CB623104-5)
文摘Development of microstructure of early cement paste (0–6 h) was investigated with 1H low-field NMR. It was found that T 2 (transverse relaxation time) distributions of fresh cement paste were bimodal and two peaks were ‘long component’ and ‘short component’. Separation degree of two peaks was a sign of exchange of water within flocculation and outside flocculation. Factors such as water cement ratio, specific surface area and dosage of superplasticizer had influences on the separation degree: the separation degree increased with the water cement ratio; the separation degree of cement paste prepared with cement with a high specific surface area was zero; dosage of superplasticizer will decrease separation degree. Results also suggested that T 2 distribution gradually moved to the left and T 2 of long component and initial fluidity were linearly correlated.
文摘To evaluate the molecular dynamics and the molecular regions presented in the cinnamon types it was chosen to evaluate them without any treatment, and for that it was used low-field nuclear magnetic resonance (NMR) through the pulse sequence such as MSE-FID, an NMR sequence in the time domain, and from the longitudinal relaxation time (with a time constant T1), employing the inversion-recovery pulse sequence. The low-field NMR results indicate that the techniques chosen were a very good alternative to evaluate these types of samples food and their structural organization according to their constituents. The molecular mobility is different.
文摘该文对不同发酵阶段的黄酒样品进行低场核磁共振(low-field nuclear magnetic resonance,LF-NMR)检测,比较了陈酿时间、酒精度和品牌对黄酒低场核磁弛豫特性的影响,最后对9个品牌黄酒的LF-NMR弛豫信息进行了主成分分析。结果表明,发酵后样品的单组分弛豫时间(T_(2W))显著缩短,而陈酿后黄酒的T_(2W)又相对延长。多组分弛豫图谱(T_(2))表明,对照组和浸米样品均只有1个峰。发酵后样品的T_(2)图谱均出现2个峰。从第一次发酵到煎酒期间,T_(21)和T_(22)不断缩短,而陈酿期间T_(21)和T_(22)相对延长。同一品牌及陈酿时间的黄酒,酒精度越大,体系的T_(2W),T_(21)和T_(22)越短;同一品牌及酒精度下,陈酿时间仅对T_(21)有一定影响。不同品牌黄酒因酿造工艺的区别而使弛豫分布有一定特点。主成分分析表明,不同酒精度、陈酿时间、品牌及种类的黄酒的弛豫特性的PCA分布及间距不同。说明应用LF-NMR技术可实现对不同工艺生产的黄酒的快速辨别。