With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this pape...With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this paper, the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first. Besides, a mathematic model of the system according to the ampere circuit rule, flux continuity theorem, and column coordinate transform is built, and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis. Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology. Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time, so we can determine various defects accurately. Finally, the theory of finite element analysis is used to build a finite element simulation model, and the relationship between defects and MFL inspection signals is studied. Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.展开更多
Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic...Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 urn to 30 urn) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.展开更多
A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equa...A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues. As the result, two representative cases are investigated. One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 laT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia. The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m^2 and 0.07 mA/m^2.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61273164 and 61034005)the National High Technology Research and Development Program of China (Grant No. 2012AA040104)the Fundamental Research Funds for the Central Universities, China (Grant No. N100104102)
文摘With the increase of pipelines, corrosion leakage accidents happen frequently. Therefore, nondestructive testing technology is important for ensuring the safe operation of the pipelines and energy mining. In this paper, the structure and principle of magnetic flux leakage (MFL) in-line inspection system is introduced first. Besides, a mathematic model of the system according to the ampere circuit rule, flux continuity theorem, and column coordinate transform is built, and the magnetic flux density in every point of space is calculated based on the theory of finite element analysis. Then we analyze and design the disposition of measurement section probes and sensors combining both three-axis MFL in-line inspection and multi-sensor fusion technology. Its advantage is that the three-axis changes of magnetic flux leakage field are measured by the multi-probes at the same time, so we can determine various defects accurately. Finally, the theory of finite element analysis is used to build a finite element simulation model, and the relationship between defects and MFL inspection signals is studied. Simulation and experiment results verify that the method not only enhances the detection ability to different types of defects but also improves the precision and reliability of the inspection system.
基金Project(2005CB623707) supported by the National Basic Research Program of China
文摘Al-Zn-Mg-Cu-Zr ingots with diameter of 200 mm were made by low frequency electromagnetic casting (LFEC) and conventional direct chill (DC) casting process. The results show that under the low frequency electromagnetic field (25 Hz, 32 mT) the microstructures of LFEC ingot from the border to the center on the cross section are all equiaxed grains, and the grains are much finer and more uniform than that of DC ingot. The magnetic flux density plays an important role in the microstructure formation of LFEC ingots. With increasing the magnetic flux density from 0 mT to 32 mT, grains become finer (from about 120 urn to 30 urn) and more uniform. While, with increasing the magnetic flux density from 32 mT to 46 mT, the grains change much slowly. In the range of experimental parameters, the optimum magnetic flux density for LFEC process is found to be 32 mT.
基金This work is supported by the National Natural Science Foundation of China (60671055, 60331010);Innovation Foundation from Beijing University of Posts and Telecommunications.
文摘A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues. As the result, two representative cases are investigated. One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 laT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia. The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m^2 and 0.07 mA/m^2.