Mn3O4was prepared with the chemical bath deposition(CBD) method. A Mn SO4 solution was obtained by the leaching and purifying of low-grade rhodochrosite ore(LGRO), which was used as raw material. The prepa ration proc...Mn3O4was prepared with the chemical bath deposition(CBD) method. A Mn SO4 solution was obtained by the leaching and purifying of low-grade rhodochrosite ore(LGRO), which was used as raw material. The prepa ration procedures were studied and promoted. The result showed that the Mn3O4 with the highest purity and highes specific surface area could be obtained under the following processes. An Mn SO4 solution of 1.0 mol/L was added into a beaker under a flow rate of 30 m L/h. The p H of the reaction solution was adjusted to 10 using NH3 H2 O a80 °C. Then the solids were washed and dried at 200 °C fo2.5 h. The total Mn content(TMC) of Mn3O4 was 72.0 %The ionic distributions was formulated as [Mn2?[Mn2??0.3024Mn30.2937Mn4?h0.37860.0254]2O4. The average crys tallite size of Mn3O4 with a tetragonal hausmannite struc ture was found to be about 35 nm by X-ray diffraction(XRD) analysis. The BET specific surface area of the Mn3O4 measured was 32 m2/g.展开更多
We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The S...We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable展开更多
According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite ...According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite\|porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low\|grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M\-1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody (>2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time.展开更多
基金supported jointly by the Bureau of Land Resources and Housing Management of Chongqing (Scientific & Technologic Program in 2011)
文摘Mn3O4was prepared with the chemical bath deposition(CBD) method. A Mn SO4 solution was obtained by the leaching and purifying of low-grade rhodochrosite ore(LGRO), which was used as raw material. The prepa ration procedures were studied and promoted. The result showed that the Mn3O4 with the highest purity and highes specific surface area could be obtained under the following processes. An Mn SO4 solution of 1.0 mol/L was added into a beaker under a flow rate of 30 m L/h. The p H of the reaction solution was adjusted to 10 using NH3 H2 O a80 °C. Then the solids were washed and dried at 200 °C fo2.5 h. The total Mn content(TMC) of Mn3O4 was 72.0 %The ionic distributions was formulated as [Mn2?[Mn2??0.3024Mn30.2937Mn4?h0.37860.0254]2O4. The average crys tallite size of Mn3O4 with a tetragonal hausmannite struc ture was found to be about 35 nm by X-ray diffraction(XRD) analysis. The BET specific surface area of the Mn3O4 measured was 32 m2/g.
基金supported by National Natural Science Foundation of China (grant NO. 21373252)
文摘We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable
文摘According to differences in features of illites including spatial distribution, crystallinity index, volume of swelling layer, polytype and relationship between its index and copper grade, two typical kinds of illite can be classified within the Tongchang porphyry copper deposit, Dexing County, East China. One is a kind of hydrothermally altered minerals within the hydrothermal alteration zone, including altered granodiorite\|porphyry and altered metamorphic tuffaceous phyllite near the contact zone with porphyry rockbody. The illite crystallinity and expandability are mainly affected by water/rock ratio or fluid flux, and hydrothermal illite is formed by illitization of plagioclase and/or micas during hydrothermal fluid evolution within the porphyry body and near the contact zone with wall rocks. The other is a product of low\|grade metamorphism itself by illitization of smectite, whose crystallinity index is lower than the hydrothermal illite and which is of 2M\-1 polytype with no swelling layer, in the altered metamorphic tuffaceous phyllite far from porphyry rockbody (>2 km). Moreover, the negative correlation between illite index and copper grade indicates that, within the alteration zone, the smaller the illite crystallinity, the stronger the alteration degree, and the higher the copper grade due to higher water/rock ratio. At lower levels of the porphyry body, however, the illite crystallinity (IC) values are controlled mainly by temperature and time.