The impedance and output power measurements of LDMOS transistors are always a problem due to their low impedance and lead widths.An improved thru-reflect-line(TRL) calibration algorithm for measuring the characteristi...The impedance and output power measurements of LDMOS transistors are always a problem due to their low impedance and lead widths.An improved thru-reflect-line(TRL) calibration algorithm for measuring the characteristics of L-band high power LDMOS transistors is presented.According to the TRL algorithm,the individual two-port S parameters of each fixture half can be obtained.By de-embedding these S parameters of the test fixture,an accurate calibration can be made.The improved TRL calibration algorithm is successfully utilized to measure the characteristics of an L-band LDMOS transistor with a 90 mm gate width.The impedance of the transistor is obtained,and output power at 1 dB compression point can reach as much as 109.4 W at 1.2 GHz, achieving 1.2 W/mm power density.From the results,it is seen that the presented TRL calibration algorithm works well.展开更多
文摘The impedance and output power measurements of LDMOS transistors are always a problem due to their low impedance and lead widths.An improved thru-reflect-line(TRL) calibration algorithm for measuring the characteristics of L-band high power LDMOS transistors is presented.According to the TRL algorithm,the individual two-port S parameters of each fixture half can be obtained.By de-embedding these S parameters of the test fixture,an accurate calibration can be made.The improved TRL calibration algorithm is successfully utilized to measure the characteristics of an L-band LDMOS transistor with a 90 mm gate width.The impedance of the transistor is obtained,and output power at 1 dB compression point can reach as much as 109.4 W at 1.2 GHz, achieving 1.2 W/mm power density.From the results,it is seen that the presented TRL calibration algorithm works well.