Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact onqual...Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact onquality of life and result in hundreds of hours of hospital time and resources. There is growing interest in the use of low magnitude, high frequency vibration(LMHFV) to improve bone structure and muscle performance in a variety of different patient groups. The technique has shown promise in a number of different diseases, but is poorly understood in terms of the mechanism of action. Scientific papers concerning both the in vivo and in vitro use of LMHFV are growing fast, but they cover a wide range of study types, outcomes measured and regimens tested. This paper aims to provide an overview of some effects of LMHFV found during in vivo studies. Furthermore we will review research concerning the effects of vibration on the cellular responses, in particular for cells within the musculoskeletal system. This includes both osteogenesis and adipogenesis, as well as the interaction between MSCs and other cell types within bone tissue.展开更多
Low-magnitude, high-frequency vibration(LMHFV) with rest days(particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current k...Low-magnitude, high-frequency vibration(LMHFV) with rest days(particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current knowledge is limited regarding the possible benefit of this mechanical regimen to other bone sites and whether the optimal rest days are the same. This study followed our previous experiment on LMHFV loading with rest days for three-month-old male Wistar rats. The experiment involved seven groups, namely, vibrational loading for X day followed with X day rest(X=1, 3, 5, 7), daily vibrational loading,tail suspension and baseline control. Micro-computed tomography(micro-CT) scanning was used to evaluate the microarchitecture of the distal femoral trabecular bone. Micro-CT image-based microfinite element analysis was performed for each distal femoral metaphysis. LMHFV with rest days substantially changed the trabecular arrangement from remarkably plate-like to rod-like. Vibrational loading with 1 day rest was substantially effective in improving the architecture and apparent-and tissuelevel mechanical properties of the rat distal femoral metaphysis. This study may provide an improved understanding of the sitespecific responses of bone tissue to LMHFV with rest days for a substantially effective therapy of a targeted bone site.展开更多
基金Engineering and Physical Sciences Research Council
文摘Due to the increasing burden on healthcare budgets of musculoskeletal system disease and injury, there is a growing need for safe, effective and simple therapies. Conditions such as osteoporosis severely impact onquality of life and result in hundreds of hours of hospital time and resources. There is growing interest in the use of low magnitude, high frequency vibration(LMHFV) to improve bone structure and muscle performance in a variety of different patient groups. The technique has shown promise in a number of different diseases, but is poorly understood in terms of the mechanism of action. Scientific papers concerning both the in vivo and in vitro use of LMHFV are growing fast, but they cover a wide range of study types, outcomes measured and regimens tested. This paper aims to provide an overview of some effects of LMHFV found during in vivo studies. Furthermore we will review research concerning the effects of vibration on the cellular responses, in particular for cells within the musculoskeletal system. This includes both osteogenesis and adipogenesis, as well as the interaction between MSCs and other cell types within bone tissue.
基金supported by the National Natural Science Foundation of China (81471753, 11432016, 11322223)the Science and Technology Development Plan Projects of Jilin province (20160101297JC, 20170519008JH, 20170520093JH)
文摘Low-magnitude, high-frequency vibration(LMHFV) with rest days(particularly seven rest days) was considerably effective in improving the morphological and mechanical properties of rat proximal femur. However, current knowledge is limited regarding the possible benefit of this mechanical regimen to other bone sites and whether the optimal rest days are the same. This study followed our previous experiment on LMHFV loading with rest days for three-month-old male Wistar rats. The experiment involved seven groups, namely, vibrational loading for X day followed with X day rest(X=1, 3, 5, 7), daily vibrational loading,tail suspension and baseline control. Micro-computed tomography(micro-CT) scanning was used to evaluate the microarchitecture of the distal femoral trabecular bone. Micro-CT image-based microfinite element analysis was performed for each distal femoral metaphysis. LMHFV with rest days substantially changed the trabecular arrangement from remarkably plate-like to rod-like. Vibrational loading with 1 day rest was substantially effective in improving the architecture and apparent-and tissuelevel mechanical properties of the rat distal femoral metaphysis. This study may provide an improved understanding of the sitespecific responses of bone tissue to LMHFV with rest days for a substantially effective therapy of a targeted bone site.