With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the comp...With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.展开更多
Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydroly...Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.展开更多
Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was inve...Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was investigated. For each system some thermodynamic properties were obtained, such as the standard free energies of equilibrium reactions, activity interaction coefficients etc ..展开更多
The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, T...The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, TG and so on. The polyoxomolybdate-based IL has high stability, and its decomposing temperature reaches 321 °C, which is higher than that of 1-alkyl-3-methylimidazolium halides IL. Further photocatalytic performances of the IL were measured via degrading dye rhodamine B(RB) in aqueous solution under the UV light irradiation. The experiments show that the conversion of RB reaches 80.5% after 90 min under UV-light and the degradation efficiency depends on the pH value of the solution, irradiation time and the dosage of the IL and so on.展开更多
[Objectives] To analyze the low melting point fat constituents in the black soybeans with green and yellow heart and their relative content,and compare the differences in the low melting point fat constituents between...[Objectives] To analyze the low melting point fat constituents in the black soybeans with green and yellow heart and their relative content,and compare the differences in the low melting point fat constituents between different kinds of black soybeans. [Methods] Using HS-SPME-GC-MS,the qualitative analysis was performed on the low melting point fat constituents of black soybeans; using peak area normalization method,the relative content of constituents was calculated. [Results]A total of 42 peaks were identified from the low melting point fat constituents of the black soybeans with yellow heart,and 18 kinds of chemical constituents were identified,accounting for 81.39% of total relative content of low melting point fat constituents; a total of 37 peaks were identified from the low melting point fat constituents of the black soybeans with green heart,and 15 kinds of chemical constituents were identified,accounting for 83.24% of total relative content of low melting point fat constituents. There were 9 kinds of common chemical constituents for the two kinds of black soybeans,and 5-allylguaiacol had the highest relative content,followed by hexanol. [Conclusions] There was no significant difference in the low melting point fat constituents between two kinds of black soybeans.展开更多
The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. ...The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.展开更多
The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in...The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.展开更多
Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitiv...Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15–38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.展开更多
文摘With the aid of a slip-disentanglemnt theory, a rheological equation has been deduced about the composite system of solid-state low melting point metal and polymer. By measuring some rheological properties of the composite system composed of low melt point metal and polypropylene (LMPM/PP), the results show that LMPM has a promoter flow action upon PP when using a small amount of LMPM and, if some coupled agents are added, the promoter flow action will be remarkable. Moreover, while LMPM being added into the composite, the temperature sensitivity of system will go rip. This indicates that the system's viscosity will drop further if its temperature is increased.
基金Project(2010CB635107) supported by the Major State Basic Research Development Program of ChinaProjects(51202064,51472081) supported by the National Natural Science Foundation of China+2 种基金Project(2013CFA085) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010016) supported by Wuhan Youth Chenguang Program of Science and Technology,ChinaProject([2013]2-22) supported by the Open Fund of Key Laboratory of Green Materials for Light Industry of Hubei Province,China
文摘Low melting point metals(Ga, In, Sn) as alloy elements were used to prepare Al-In-Sn and Al-Ga-In-Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction(XRD) and scanning electron microscopy(SEM) with energy disperse spectroscopy(EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al-In-Sn ternary alloys are Al and two intermetallic compounds, In3 Sn and In Sn4. All Al-In-Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al-In-Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga-In3Sn-In Sn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity.
基金Project Sponsored by the National Natural Science Foundation
文摘Interaction rule between representative RE and Sn, Sb, Pb, Cu, S, P low melting point elements respectively in Fe , Cu , Al , Ni base liquid solutions including totally 34 ternary and quarternary systems was investigated. For each system some thermodynamic properties were obtained, such as the standard free energies of equilibrium reactions, activity interaction coefficients etc ..
基金Supported by the National Natural Science Foundation of China(Nos.2067101120731002+3 种基金20801004 10876002 20801005)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200800070015).
文摘The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=1-methyl-3-octylimi- dazolium) with a low melting point of 82.6 °C was successfully prepared and characterized by FTIR, XPS, NMR, TG and so on. The polyoxomolybdate-based IL has high stability, and its decomposing temperature reaches 321 °C, which is higher than that of 1-alkyl-3-methylimidazolium halides IL. Further photocatalytic performances of the IL were measured via degrading dye rhodamine B(RB) in aqueous solution under the UV light irradiation. The experiments show that the conversion of RB reaches 80.5% after 90 min under UV-light and the degradation efficiency depends on the pH value of the solution, irradiation time and the dosage of the IL and so on.
文摘[Objectives] To analyze the low melting point fat constituents in the black soybeans with green and yellow heart and their relative content,and compare the differences in the low melting point fat constituents between different kinds of black soybeans. [Methods] Using HS-SPME-GC-MS,the qualitative analysis was performed on the low melting point fat constituents of black soybeans; using peak area normalization method,the relative content of constituents was calculated. [Results]A total of 42 peaks were identified from the low melting point fat constituents of the black soybeans with yellow heart,and 18 kinds of chemical constituents were identified,accounting for 81.39% of total relative content of low melting point fat constituents; a total of 37 peaks were identified from the low melting point fat constituents of the black soybeans with green heart,and 15 kinds of chemical constituents were identified,accounting for 83.24% of total relative content of low melting point fat constituents. There were 9 kinds of common chemical constituents for the two kinds of black soybeans,and 5-allylguaiacol had the highest relative content,followed by hexanol. [Conclusions] There was no significant difference in the low melting point fat constituents between two kinds of black soybeans.
文摘The dispersion mechanism of low melting point metal (LMPM) particles in polymers was studied using Cox dilute emulsion model. The critical destruction shear stress sigma of LMPM droplets is sigma greater than 2 v/d. When sigma is small, LMPM droplets were dispersed and deformed ellipsoidal or bar droplets whose orientation direction is always at an angle of 45 degree with the direction of shear rate. When sigma is very big and droplets are very fine, polymer melt elasticity behavior and big boundary tension between a polymer melt and LMPM droplets make further fining LMPM droplets become more difficult. Therefore, LMPM droplets produce tensile flow and form LMPM microfibrils in situ in polymer melt. SEM photographs have shown the results predicted using dilute emulsion model. (Author abstract) 7 Refs.
基金Supported by Foundation for University Key Teacher by the Ministry of Education
文摘The low melting point metallic tin powder or alloy of tin and lead was blended with polypropylene. A kind of in situ composite has been prepared. The variations of torque were studied when the composites were mixed in Haake torque rheogeniometer. By way of capillary extrusion, effects upon rheology of the in situ composites of the low melting point metals (LMPM) and coupling agent for their different variety and content, were investigated. From flow curves, the results indicate that in situ composites mixed with the LMPM are a kind of pseudoplastic fluid. If the LMPM were melted, the higher the content of the LMPM, the lower apparent viscosity of composites. Meanwhile, when the coupling agent is added into composites , the viscosity of composite will go up first and drop then. This shows that the LMPM have a promoter flow action on the polypropylene.
文摘Genetic mutations are important molecular biomarkers for cancer diagnosis and surveillance. Therefore, the development of methods for mutation detection characterized with straightforward, highly specific and sensitive to low-level mutations within various sequence contexts is extremely needed. Although some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a fluorescent probe coupled with blocker and property of melting temperature discrimination, which is able to identify the presence of known or unknown single-base variations at abundances down to 0.1% within 20 min. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 10.15–38.48. The method is sequence independent, which assures a wide range of application. The new method would be an ideal choice for high-throughput in vitro diagnosis and precise clinical treatment.