期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Design and fabrication of a low modulus β-type Ti-Nb-Zr alloy by controlling martensitic transformation 被引量:5
1
作者 Qing-Kun Meng Yu-Fei Huo +4 位作者 Wen Ma Yan-Wei Sui Jin-Yong Zhang Shun Guo Xin-Qing Zhao 《Rare Metals》 SCIE EI CAS CSCD 2018年第9期789-794,共6页
In this paper, high density of dislocations, grain boundaries and nanometer-scale α precipitates were intro- duced to a metastable Ti-36Nb-5Zr alloy (wt%) through a thermo-mechanical approach including severe cold ... In this paper, high density of dislocations, grain boundaries and nanometer-scale α precipitates were intro- duced to a metastable Ti-36Nb-5Zr alloy (wt%) through a thermo-mechanical approach including severe cold rolling and short-time annealing treatment. The martensitic trans- formation was retarded, and the β phase with low content of β stabilizers was retained at room temperature after the thermo-mechanical treatment. As a result, both low mod- ulus (57 GPa) and high strength (950 MPa) are obtained. The results indicate that it is a feasible strategy to control martensitic transformation start temperature through microstructure optimization instead of composition design, with the aim of fabricating low modulus β-type Ti alloy. 展开更多
关键词 Biomedical Ti alloys MARTENSITICTRANSFORMATION low modulus Short-time annealing
原文传递
Fabrication of porous TiZrNbTa high-entropy alloys/Ti composite with high strength and low Young’s modulus using a novel MgO space holder
2
作者 Tao Xiang Jie Chen +3 位作者 Weizong Bao Shuyan Zhong Peng Du Guoqiang Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第36期59-73,共15页
Stress shielding is caused by the mismatch of stiffness between bone and implant materials,which may give rise to bone resorption and loosening,thereby causing implantation failure.There is a huge gap between Young’s... Stress shielding is caused by the mismatch of stiffness between bone and implant materials,which may give rise to bone resorption and loosening,thereby causing implantation failure.There is a huge gap between Young’s modulus of human bone and low Young’s modulusβTi alloys.A porous structure design can achieve the target of low Young’s modulus,and thus achieve the matching between human bone and implant materials.However,a suitable space holder(SH)that can be applied at high temperatures and sintering pressure has not been reported.In this study,the TiZrNbTa/Ti titanium matrix composite(TMC)with high strength and large ductility was used as scaffold materials and combined the SH technique with the spark plasma sintering(SPS)technique to obtain a porous structure.A novel space holder,i.e.,MgO particles was adopted,which can withstand high-temperature sintering accompanied by a sintering pressure.The porous TiZrNbTa/Ti with 40 vol.%MgO added exhibits a maximum strength of 345.9±10.4 MPa and Young’s modulus of 24.72±0.20 GPa,respectively.It possesses higher strength compared with human bone and matches Young’s modulus of human bone,which exhibits great potential for clinical application. 展开更多
关键词 TiZrNbTa/Ti titanium matrix composite MgO space holder low Young’s modulus High strength
原文传递
A novel biomedical titanium alloy with high antibacterial property and low elastic modulus 被引量:6
3
作者 Diangeng Cai Xiaotong Zhao +4 位作者 Lei Yang Renxian Wang Gaowu Qin Da-fu Chen Erlin Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期13-25,共13页
β-type titanium alloys have attracted much attention as implant materials because of their low elastic modulus and high strength,which is closer to human bones and can avoid the problem of stress fielding and extend ... β-type titanium alloys have attracted much attention as implant materials because of their low elastic modulus and high strength,which is closer to human bones and can avoid the problem of stress fielding and extend the lifetime of prosthetics.However,other issues,such as the infection or inflammation postimplantation,still trouble the titanium alloy's clinical application.In this paper,we developed a novel nearβ-titanium alloy(Ti-13Nb-13Zr-13Ag,TNZA)with low elastic modulus and strong antibacterial ability by the addition of Ag element followed by proper microstructure controlling,which could reduce the stress shielding and bacterial infections simultaneously.The microstructure,mechanical properties,corrosion resistance,antibacterial properties and cell toxicity were studied using SEM,electrochemical testing,mechanical test and cell tests.The results have demonstrated that TNZA alloy exhibited an elastic modulus of 75-87 GPa and a strong antibacterial ability(up to 98%reduction)and good biocompatibility.Moreover,it was also shown that this alloy's corrosion resistance was better than that of Ti-13Nb-13Zr.All the results suggested that Ti-13Nb-13Zr-13Ag might be a competitive biomedical titanium alloy. 展开更多
关键词 low Young’s modulus Antibacterial property Titanium alloy Compatibility Antibacterial titanium alloy
原文传递
Foaming biocompatible and biodegradable PBAT/PLGA as fallopian tube stent using supercritical carbon dioxide
4
作者 Yue Wang Luyao Huan +2 位作者 Haiyan Liang Xuejia Ding Jianguo Mi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期245-253,共9页
Tubal pregnancy is a common abnormal pregnancy manifestation,and the ordinary conservative treatment of tubal adhesion usually leads to the rupture of fallopian tube,which increases the risk of a second ectopic pregna... Tubal pregnancy is a common abnormal pregnancy manifestation,and the ordinary conservative treatment of tubal adhesion usually leads to the rupture of fallopian tube,which increases the risk of a second ectopic pregnancy.To avoid this symptom,it is suitable to implant a stent to separate the adhesion.Here we prepared the PBAT/PLGA foam as the stent material using supercritical CO_(2) foaming technology.With uniform macroporous structure and thin-wall feature,the foam possessed low compressive modulus in prevention of the possible second injury to the fallopian tube.The introduction of PLGA 50/50 improved the biodegradable capability of the foam,with a mass loss about 20% after a 12-week hydrolysis.After implanted into the ruptured fallopian tube of the rabbit model,the foam displayed excellent biocompatibility,and provided a good support to prevent tubal adhesion.As such,this work provides the foam material as a promising candidate for fallopian tube stent to remedy the tubal adhesion. 展开更多
关键词 Bio-foam Tissue engineering low compressive modulus Rapid hydrolysis
下载PDF
Biomedical titanium alloys and their additive manufacturing 被引量:19
5
作者 Yu-Lin Hao Shu-Jun Li Rui Yang 《Rare Metals》 SCIE EI CAS CSCD 2016年第9期661-671,共11页
Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A br... Titanium and its alloys have been widely used for biomedical applications due to their better biomechanical and biochemical compatibility than other metallic materials such as stainless steels and Co-based alloys.A brief review on the development of the b-type titanium alloys with high strength and low elastic modulus is given and the use of additive manufacturing technologies to produce porous titanium alloy parts,using Ti-6Al-4V as a reference,and its potential in fabricating biomedica replacements are discussed in this paper. 展开更多
关键词 Beta titanium alloys High strength low elastic modulus Additive manufacturing Biomedical application
原文传递
Wear response of metastable b-type Ti–25Nb–2Mo–4Sn alloy for biomedical applications 被引量:1
6
作者 Shun Guo Qi Zheng +2 位作者 Xiu-Li Hou Xiao-Nong Cheng Xin-Qing Zhao 《Rare Metals》 SCIE EI CAS CSCD 2015年第8期564-568,共5页
The wear response of a newly developed metastable b-type Ti–25Nb–2Mo–4Sn(abbreviated as Ti-2524) alloy was investigated and compared with that of(a+b)-type Ti–6Al–4V alloy. Experimental results show that solution... The wear response of a newly developed metastable b-type Ti–25Nb–2Mo–4Sn(abbreviated as Ti-2524) alloy was investigated and compared with that of(a+b)-type Ti–6Al–4V alloy. Experimental results show that solution-treated(ST) Ti-2524 specimen has the lowest wear rate due to the combined effects of excellent ductility and lubricative Nb2O5. Although similar Nb2O5 forms on the surface of the cold rolled plus annealed(CRA) Ti-2524 specimen, the beneficial effect of Nb2O5 on the wear resistance is counteracted by the increase in wear rate caused by low elongation. Thus, the wear rate of the CRA Ti-2524 alloy is higher than that of ST Ti-2524 specimen.As for the ST Ti–6Al–4V alloy, no lubricative Nb2O5 forms on its worn surface owing to the absence of Nb. In addition, the ST Ti–6Al–4V alloy exhibits an elongation roughly similar to the CRA Ti-2524 specimen. Therefore,the ST Ti–6Al–4V specimen possesses a higher wear rate than the CRA Ti-2524 specimen. 展开更多
关键词 Titanium alloy Wear response low elastic modulus H
原文传递
Mechanobiologically optimized Ti-35Nb-2Ta-3Zr improves load transduction and enhances bone remodeling in tilted dental implant therapy 被引量:1
7
作者 Chuanyuan Mao Weijun Yu +6 位作者 Min Jin Yingchen Wang Xiaoqing Shang Lu Lin Xiaoqin Zeng Liqiang Wang Eryi Lu 《Bioactive Materials》 SCIE 2022年第10期15-26,共12页
The tilted implant with immediate function is increasingly used in clinical dental therapy for edentulous and partially edentulous patients with excessive bone resorption and the anatomic limitations in the alveolar r... The tilted implant with immediate function is increasingly used in clinical dental therapy for edentulous and partially edentulous patients with excessive bone resorption and the anatomic limitations in the alveolar ridge.However,peri-implant cervical bone loss can be caused by the stress shielding effect.Herein,inspired by the concept of“materiobiology”,the mechanical characteristics of materials were considered along with bone biology for tilted implant design.In this study,a novel Ti-35Nb-2Ta-3Zr alloy(TNTZ)implant with low elastic modulus,high strength and favorable biocompatibility was developed.Then the human alveolar bone environment was mimicked in goat and finite element(FE)models to investigate the mechanical property and the related peri-implant bone remodeling of TNTZ compared to commonly used Ti-6Al-4V(TC4)in tilted implantation under loading condition.Next,a layer-by-layer quantitative correlation of the FE and X-ray Microscopy(XRM)analysis suggested that the TNTZ implant present better mechanobiological characteristics including improved load transduction and increased bone area in the tilted implantation model compared to TC4 implant,especially in the upper 1/3 region of peri-implant bone that is“lower stress”.Finally,combining the static and dynamic parameters of bone,it was further verified that TNTZ enhanced bone remodeling in“lower stress”upper 1/3 region.This study demonstrates that TNTZ is a mechanobiological optimized tilted implant material that enhances load transduction and bone remodeling. 展开更多
关键词 Ti-35Nb–2Ta–3Zr Tilted implant low elastic modulus Bone remodeling Mechanobiologically optimization
原文传递
Mechanical and biological properties of Ti–(0–25 wt%)Nb alloys for biomedical implants application 被引量:2
8
作者 Yuqing Zhang Danni Sun +2 位作者 Jun Cheng James Kit Hon Tsoi Jiang Chen 《Regenerative Biomaterials》 SCIE 2020年第1期119-127,共9页
Binary titanium–niobium(Ti–Nb)alloys have recently been attracted due to low Young’s moduli and non-toxic properties.This study explores the influence of low Nb content(0–25 wt%)on the comprehensive parameters of ... Binary titanium–niobium(Ti–Nb)alloys have recently been attracted due to low Young’s moduli and non-toxic properties.This study explores the influence of low Nb content(0–25 wt%)on the comprehensive parameters of tensile stress–strain relationships(ultimate strength(rUTS),yield strength(r0.2)and elastic modulus(E)),surfaces properties(Vickers microhardness,surface roughness(Ra),water contact angle(WCA),X-ray diffraction(XRD)and scanning electron microscopy(SEM)),corrosion resistance(in artificial saliva and lactic acid)and biological properties(cytotoxicity and alkaline phosphatase activity of MC3T3-E1 pre-osteoblasts)of Ti–xNb alloys(x紏5,10,15,20 and 25 wt%),with using commercially pure grade 2 titanium(cp-Ti)as control.XRD results shown that all the Ti–xNb alloys comprised atb Ti alloy phases,such that the b phase increased correspondingly with the increased amount of Nb in the alloy,as well as the reduction of E(69–87 GPa).Except Ti–5Nb,all other Ti–xNb alloys showed a significantly higher hardness,increased rUTS and r0.2,and decreased WCA compared with cp-Ti.No corrosion was detected on Ti–xNb alloys and cp-Ti in artificial saliva and lactic acid solutions.The cytotoxicity of Ti–xNb alloys was comparable to that of cp-Ti in MC3T3-E1 pre-osteoblasts without interference from differentiation behaviour,but the proliferation rate of the Ti–5Nb alloy was lower than other groups.In overall,binary Ti–(10–25 wt%)Nb alloys are promising candidate for orthopaedic and dental implants due to their improved mechanical properties and comparable biological performance,while Ti–5Nb should be used with caution. 展开更多
关键词 biomaterial titanium-niobium binary titanium alloys low Young’s modulus BIOCOMPATIBILITY
原文传递
Corrugated Graphene Paper Reinforced Silicone Resin Composite for Efficient Interface Thermal Management
9
作者 Bo-Wen Wang Heng Zhang +3 位作者 Qing-Xia He Hui-Tao Yu Meng-Meng Qin Wei Feng 《Chinese Journal of Polymer Science》 SCIE EI CAS 2024年第7期1002-1014,I0010,共14页
With the rapid development of high-power-density electronic devices,interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products.Therefore,there is a... With the rapid development of high-power-density electronic devices,interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products.Therefore,there is an urgent demand for advanced thermal interface materials(TIMs)with high cross-plane thermal conductivity and excellent compressibility to withstand increasingly complex operating conditions.To achieve this aim,a promising strategy involves vertically arranging highly thermoconductive graphene on polymers.However,with the currently available methods,achieving a balance between low interfacial thermal resistance,bidirectional high thermal conductivity,and large-scale production is challenging.Herein,we prepared a graphene framework with continuous filler structures in in-plane and cross-plane directions by bonding corrugated graphene to planar graphene paper.The interface interaction between the graphene paper framework and polymer matrix was enhanced via surface functionalization to reduce the interface thermal resistance.The resulting three-dimensional thermal framework endows the polymer composite material with a cross-plane thermal conductivity of 14.4 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 130W·m^(-1)·K^(-1)when the thermal filler loading is 10.1 wt%,with a thermal conductivity enhancement per 1 wt%filler loading of 831%,outperforming various graphene structures as fillers.Given its high thermal conductivity,low contact thermal resistance,and low compressive modulus,the developed highly thermoconductive composite material demonstrates superior performance in TIM testing compared with TFLEX-700,an advanced commercial TIM,effectively solving the interfacial heat transfer issues in electronic systems.This novel filler structure framework also provides a solution for achieving a balance between efficient thermal management and ease of processing. 展开更多
关键词 Graphene paper Vertically aligned structure Cross-plane thermal conductivity low compressive modulus Thermal interface material
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部