Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ...In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.展开更多
This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gai...This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.展开更多
This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is...This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.展开更多
Study of atmospheric remnants in the low Earth orbit region (~200 km altitude) using Global Models, with application to electric thrusters of in situ resources utilization type.
A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the re...A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.展开更多
This paper deals with the re-entry predictions of the space objects from the low eccentric orbit. Any re-entering object re-enters the Earth’s atmosphere with a high orbital velocity. Due to the aerodynamic heating t...This paper deals with the re-entry predictions of the space objects from the low eccentric orbit. Any re-entering object re-enters the Earth’s atmosphere with a high orbital velocity. Due to the aerodynamic heating the object tends to break into multiple fragments which later pose a great risk hazard to the population. Here a satellite is considered as the space object for which the re-entry prediction is made. This prediction is made with a package where the trajectory path, the time of re-entry and the survival rate of the fragments is done. The prediction is done using DRAMA 2.0—ESA’s Debris Risk Assessment and Mitigation Analysis Tool suite, MATLAB and Numerical Prediction of Orbital Events software. The predicted re-entry time of OSIRIS 3U was found to be on 7th March 2019, 7:25 (UTC), whereas the actual re-entry time was on 7th March 2019, 7:03 (UTC). The trajectory path found was 51.5699 deg. (Lat), −86.5738 deg. (Long.) with an altitude of 168.643 km. But the actual trajectory was 51.76 deg. (Lat), −89.01deg. (Long.) with an altitude of 143.5 km.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by ...Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.展开更多
Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical exper...Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are diseussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ± 70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.展开更多
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
基金supported by the National Key R&D Program of China (Grant No. 2022YFF0503700)the special found of Hubei Luojia Laboratory (220100011)supported by the Dragon 5 cooperation 2020-2024 (project no. 59236)
文摘In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively.
基金supported by the National Defense Pre-research Foundation (9140A21041110KG0148)
文摘This paper addresses the problem of sensor search scheduling in the complicated space environment faced by the low-earth orbit constellation.Several search scheduling methods based on the commonly used information gain are compared via simulations first.Then a novel search scheduling method in the scenarios of uncertainty observation is proposed based on the global Shannon information gain and beta density based uncertainty model.Simulation results indicate that the beta density model serves a good option for solving the problem of target acquisition in the complicated space environments.
基金Supported by the National Natural Science Foundation of China under Grant No 51277165the Natural Science Foundation of Zhejiang Province under Grant No LY15F10001
文摘This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.
文摘Study of atmospheric remnants in the low Earth orbit region (~200 km altitude) using Global Models, with application to electric thrusters of in situ resources utilization type.
文摘A detailed theoretical analysis on the orbital lifetime and orbital inclination of a Low Moon-Orbiting satellite (LMOs) and the ‘stable areas' of long orbital lifetime are given. Numerical simulations under the real force model were carried out, which not only validate the theoretical analysis and also give some valuable results for the orbit design of the LMOs.
文摘This paper deals with the re-entry predictions of the space objects from the low eccentric orbit. Any re-entering object re-enters the Earth’s atmosphere with a high orbital velocity. Due to the aerodynamic heating the object tends to break into multiple fragments which later pose a great risk hazard to the population. Here a satellite is considered as the space object for which the re-entry prediction is made. This prediction is made with a package where the trajectory path, the time of re-entry and the survival rate of the fragments is done. The prediction is done using DRAMA 2.0—ESA’s Debris Risk Assessment and Mitigation Analysis Tool suite, MATLAB and Numerical Prediction of Orbital Events software. The predicted re-entry time of OSIRIS 3U was found to be on 7th March 2019, 7:25 (UTC), whereas the actual re-entry time was on 7th March 2019, 7:03 (UTC). The trajectory path found was 51.5699 deg. (Lat), −86.5738 deg. (Long.) with an altitude of 168.643 km. But the actual trajectory was 51.76 deg. (Lat), −89.01deg. (Long.) with an altitude of 143.5 km.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金supported by the National Basic Research Programof China(973 Program)(2012CB720000)the National Natural Science Foundation of China(11102020)+1 种基金Program for New Century Excellent Talents in UniversityBeijing Higher Education Young Elite Teacher Project and China Scholarship Council
文摘Asteroid exploration trajectories which start from a lunar orbit are investigated in this work.It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth,then escapes from the Earth by performing a perigee maneuver.A low-energy transfer in Sun-EarthMoon system is adopted.First,the feasible region of lowenergy transfer from lunar orbit to perigee within 5 000 km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed.Three transfer types are found,i.e.,large maneuver and fast transfers,small maneuver and fast transfers,and disordered and slow transfers.Most of feasibility trajectories belong to the first two types.Then,the lowenergy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver.The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm.Finally,taking 4179 Toutatis asteroid as the target,some low-energy transfer trajectories are obtained and analyzed.
基金supported by the National Natural Science Foundation of China(41174026,41104047,41174017)the Key laboratory Foundation of Geo-space Environment and Geodesy of Ministry of Education(11-01-03)
文摘Combining with the exigent demand of the development of satellite gravimetry system in China, aiming at the determination of technical indexes of gravity satellite orbit parameters, on the basis of the numerical experiments and results analysis, the design indexes of gravity satellite orbit height, inter-satellite range and the orbit inclination are analyzed and calculated, and the issues towards twin gravity satellites such as coherence requirement of the orbit semi-major axes, control requirement of the pitch angle and time interval requirement to keep twin satellites formation in mobility are diseussed. Results show that the satellite orbit height is 400 km to 500 km, the inter-satellite range is about 220 km, the satellite orbit inclination is between polar orbit and sun-synchronous orbit, the semi-major axes difference of twin satellites orbit is within ± 70. 146 m, the pitch angle of twin satellites is about 0.9 degree, and the time interval to keep twin satellites formation in mobility is 7 days to 15 days.