This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability...This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability oilfield by more than 10%. The practice shows that the liquid CO2 injection in low permeability reservoir is easier than water injection, and the reservoir generally has better CO2 storage.展开更多
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll...In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.展开更多
BZ oilfield in Bohai Bay of China was a typical offshore low permeability oilfield, which was restricted by many factors such as environment and economy. In this paper, the development characteristics of BZ oilfield w...BZ oilfield in Bohai Bay of China was a typical offshore low permeability oilfield, which was restricted by many factors such as environment and economy. In this paper, the development characteristics of BZ oilfield were summarized in depth, and the new development mode of offshore low-permeability oilfield was explored from reservoir prediction, well spacing and fracturing technology. Taking BZ oilfield as an example, a set of technical system for the effective development of offshore low permeability oilfield had been formed through research, which mainly includes reservoir prediction and evaluation of offshore middle and deep low permeability oilfield, optimization of horizontal well pattern, multi-stage fracturing design of horizontal well and other technologies. The results show that improving the resolution of seismic data, strengthening the analysis of seismic reflection characteristics and carrying out the comprehensive study of seismic geology were the keys to solve the reservoir prediction of offshore low-permeability oil fields. Multi-stage fracturing horizontal well pattern is the main pattern of offshore low-permeability oilfield development. The parameters of multi-stage fracturing horizontal well together affect the development effect. Selecting the optimal fractured horizontal well pattern can greatly improve the development effect. The successful combination and application of new technology system was the foundation and core of conquering offshore low-permeability oil fields. On the basis of understanding the geological characteristics of oil reservoirs, it is an effective means of developing offshore low-permeability oil fields by selecting reasonable production methods, well types and well patterns. Using efficient perforation and fracturing technology to successfully control fracture parameters and form optimal injection and production well pattern was the key to improve low permeability offshore oil fields.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based...The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.展开更多
Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity an...Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity and permeability are mainly as follows: large area, low abundance, small gas pools and large gas provinces; widely distributed excellent hydrocarbon source rocks with closely contacted source-reservoir-cap association; development mainly in large continental depressions or in paralic shallow-river delta systems; many kinds of traps coexisting in large areas, dominantly para-layered lithologic, digenetic and capillary pressure traps; double fluid flow mechanisms of Darcy flow and non-Darcy flow; complicated gas and water relations; and having the resource distribution of highly productive "sweet spots", banding concentration, and macroscopically large areas integrated. The main controlling factors of large sandstone gas provinces with low porosity and permeability are stable dynamic backgrounds and gentle structural frameworks which control the extensive distribution of alternate (interbedded) sandstones and mudstones; weak hydropower of large gentle lake basins controlling the formation of discontinuous, low porosity and permeability reservoirs in shallow-water deltas; regionally differential diagenesis and no homogeneous digenetic facies controlling the development of favorable reservoirs and digenetic traps; and weak and dispersive reservoir-forming dynamic forces leading to the widely distributed small traps with low abundance. Low porosity and permeability gas provinces with different trap types have different formation mechanisms which include fluid diversion pressure difference interactive mechanism of lithologic-trap gas accumulations, separated differential collection mechanism of digenetic-trap gas accumulations, and the Non-Darcy flow mechanism of capillary-pressure gas accumulations.展开更多
低渗透油田开发面临传统采油技术效率低、环境污染等挑战,生物酶化学驱油技术因其环保高效而备受关注,但其在低渗透油田中的适用性和稳定性尚需进一步研究。针对这些问题展开系统性的实验研究,首先通过对不同种类生物酶的优选,发现脂肪...低渗透油田开发面临传统采油技术效率低、环境污染等挑战,生物酶化学驱油技术因其环保高效而备受关注,但其在低渗透油田中的适用性和稳定性尚需进一步研究。针对这些问题展开系统性的实验研究,首先通过对不同种类生物酶的优选,发现脂肪酶在不同质量浓度下表现出最显著的驱油效果,最佳质量浓度为2.0 g·L^(-1),可提高原油采收率至24.5%。其次,评价脂肪酶在高盐度和碱性条件下的稳定性,发现在适当质量浓度下脂肪酶仍能保持较高的驱油效果,但在极端条件下其活性可能会受到抑制。最后,研究发现脂肪酶能够有效降低原油表面张力,当质量浓度为2.0 g·L^(-1)时,原油表面张力可降至37.9 m N·m^(-1)。展开更多
文摘This paper discusses the new progress and field application of CO2 flooding in low permeability reservoirs enhanced oil recovery. The study shows that CO2 flooding can improve the oil recovery rate of low permeability oilfield by more than 10%. The practice shows that the liquid CO2 injection in low permeability reservoir is easier than water injection, and the reservoir generally has better CO2 storage.
基金Project 50374048 supported by the National Natural Science Foundation of China
文摘In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
文摘BZ oilfield in Bohai Bay of China was a typical offshore low permeability oilfield, which was restricted by many factors such as environment and economy. In this paper, the development characteristics of BZ oilfield were summarized in depth, and the new development mode of offshore low-permeability oilfield was explored from reservoir prediction, well spacing and fracturing technology. Taking BZ oilfield as an example, a set of technical system for the effective development of offshore low permeability oilfield had been formed through research, which mainly includes reservoir prediction and evaluation of offshore middle and deep low permeability oilfield, optimization of horizontal well pattern, multi-stage fracturing design of horizontal well and other technologies. The results show that improving the resolution of seismic data, strengthening the analysis of seismic reflection characteristics and carrying out the comprehensive study of seismic geology were the keys to solve the reservoir prediction of offshore low-permeability oil fields. Multi-stage fracturing horizontal well pattern is the main pattern of offshore low-permeability oilfield development. The parameters of multi-stage fracturing horizontal well together affect the development effect. Selecting the optimal fractured horizontal well pattern can greatly improve the development effect. The successful combination and application of new technology system was the foundation and core of conquering offshore low-permeability oil fields. On the basis of understanding the geological characteristics of oil reservoirs, it is an effective means of developing offshore low-permeability oil fields by selecting reasonable production methods, well types and well patterns. Using efficient perforation and fracturing technology to successfully control fracture parameters and form optimal injection and production well pattern was the key to improve low permeability offshore oil fields.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
文摘The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.
基金Supported by PetroChina Science and Technology Project (Grant No. 07-01C-01-07) Youth Innovation Fund Project (Grant Nos. 10100042KT96, 07-06D-01-04-01-03)
文摘Based on the analysis of the geological characteristics and controlling factors, we analyzed the formation mechanism of different types of gas reservoirs. The main characteristics of gas provinces with low porosity and permeability are mainly as follows: large area, low abundance, small gas pools and large gas provinces; widely distributed excellent hydrocarbon source rocks with closely contacted source-reservoir-cap association; development mainly in large continental depressions or in paralic shallow-river delta systems; many kinds of traps coexisting in large areas, dominantly para-layered lithologic, digenetic and capillary pressure traps; double fluid flow mechanisms of Darcy flow and non-Darcy flow; complicated gas and water relations; and having the resource distribution of highly productive "sweet spots", banding concentration, and macroscopically large areas integrated. The main controlling factors of large sandstone gas provinces with low porosity and permeability are stable dynamic backgrounds and gentle structural frameworks which control the extensive distribution of alternate (interbedded) sandstones and mudstones; weak hydropower of large gentle lake basins controlling the formation of discontinuous, low porosity and permeability reservoirs in shallow-water deltas; regionally differential diagenesis and no homogeneous digenetic facies controlling the development of favorable reservoirs and digenetic traps; and weak and dispersive reservoir-forming dynamic forces leading to the widely distributed small traps with low abundance. Low porosity and permeability gas provinces with different trap types have different formation mechanisms which include fluid diversion pressure difference interactive mechanism of lithologic-trap gas accumulations, separated differential collection mechanism of digenetic-trap gas accumulations, and the Non-Darcy flow mechanism of capillary-pressure gas accumulations.
文摘低渗透油田开发面临传统采油技术效率低、环境污染等挑战,生物酶化学驱油技术因其环保高效而备受关注,但其在低渗透油田中的适用性和稳定性尚需进一步研究。针对这些问题展开系统性的实验研究,首先通过对不同种类生物酶的优选,发现脂肪酶在不同质量浓度下表现出最显著的驱油效果,最佳质量浓度为2.0 g·L^(-1),可提高原油采收率至24.5%。其次,评价脂肪酶在高盐度和碱性条件下的稳定性,发现在适当质量浓度下脂肪酶仍能保持较高的驱油效果,但在极端条件下其活性可能会受到抑制。最后,研究发现脂肪酶能够有效降低原油表面张力,当质量浓度为2.0 g·L^(-1)时,原油表面张力可降至37.9 m N·m^(-1)。