In order to make full use of the characteristics of commodity prices,merchants on e-commerce platforms have adopted the low-price marketing strategy.Regular promotional discounts can bring new vitality to the commodit...In order to make full use of the characteristics of commodity prices,merchants on e-commerce platforms have adopted the low-price marketing strategy.Regular promotional discounts can bring new vitality to the commodity sales market,but extreme discount marketing methods would lead to serious impacts on the sales of competing products,thus affecting the stable development of the online shopping market.The sales data of four electrical products using the false low-price marketing strategy on three e-commerce platforms(Taobao,JD,and Amazon)were used in this study.The sales data from different e-commerce platforms and different time periods were analyzed,and one-way ANOVA was used on the factors affecting the effect of marketing strategy.The results showed that there is a significant difference between the direct marketing of high-priced products and low-priced products on Taobao;the difference between the marketing effects of high-priced products and mid-priced products on JD and Amazon is significant.This analysis would help businesses formulate reasonable marketing strategies and promote the stable development of the online shopping market.展开更多
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially...The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.展开更多
We demonstrate in-plane field-free-switching spin-orbit torque(SOT)magnetic tunnel junction(MTJ)devices that are capable of low switching current density,fast speed,high reliability,and,most importantly,manufactured u...We demonstrate in-plane field-free-switching spin-orbit torque(SOT)magnetic tunnel junction(MTJ)devices that are capable of low switching current density,fast speed,high reliability,and,most importantly,manufactured uniformly by the 200-mm-wafer platform.The performance of the devices is systematically studied,including their magnetic properties,switch-ing behaviors,endurance and data retention.The successful integration of SOT devices within the 200-mm-wafer manufactur-ing platform provides a feasible way to industrialize SOT MRAMs.It is expected to obtain excellent performance of the devices by further optimizing the MTJ film stacks and the corresponding fabrication processes in the future.展开更多
Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of...Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of the Mianzhu-Changning intracratonic rift in the Sichuan Basin.The four understandings are:(1)The platform margin belt of the Deng 4 Member can be divided into three sections,northern,middle and southern;the middle section is at the core of the Gaoshiti-Moxi paleouplift and the structural high now,while the southern and northern sections are at the slope of the paleouplift and the structural lows now;the three sections have similar development characteristics and reservoir features of platform margin mound-shoal complex.(2)In the margin of the east side of the rift,there are several faults nearly perpendicular to the platform margin belt,the faults divide the platform margin belt into rugged paleo-landform,and the high part developed platform margin mound-shoal complexes and the reservoirs are good in physical properties,while the low part developed inter-beach depression and no mound-shoal complexes,where the reservoirs are poor in physical properties.(3)The six groups of faults nearly perpendicular to the platform margin belt divide the platform margin belt into seven large mound-shoal complexes which have similar hydrocarbon accumulation conditions and accumulation evolution process and are rich in petroleum.(4)The inter shoal depressions between the mound-shoal complexes are characterized by tighter lithology,which can block the updip direction of the mounds and shoals at the lower part of the slope of the paleouplift and are favorable for the later preservation of mound-shoal gas reservoirs.This has been proved by Well Jiaotan 1 and Heshen 2 drilled successfully.The mound-shoal complexes on the platform margin of the structural slope area have a good exploration prospect.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much th...As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much that existing backhaul networks soon will not be able to support all traffic demands.To support these needs in future 6G mobile systems,the establishment of an additional backhaul wireless network is considered essential.As one of the solutions,a wireless backhaul network based on an aerial platform has been proposed.In order to explore the potential of aerial platforms as wireless backhaul networks,in this paper,the categories for wireless backhaul networks based on aerial platforms are investigated.This paper includes a survey of the definitions and characteristics of low altitude platforms(LAPs)and high altitude platforms(HAPs),as well as channel models according to the atmosphere.For wireless backhaul network designs based on aerial platforms,altitude and platform selection options,deployment options,energy issues,and security based on target location and performance were considered in the analysis and investigation.展开更多
Low carbon landscape development is an emerging approach of landscape design,which aims to promote sustainable development,and reduce energy consumption and environmental impact by reducing carbon emissions.As an impo...Low carbon landscape development is an emerging approach of landscape design,which aims to promote sustainable development,and reduce energy consumption and environmental impact by reducing carbon emissions.As an important component of low carbon landscape construction,the construction of urban pocket park system based on mini-parks plays a crucial role in improving the urban greening level,increasing the urban green space,alleviating the urban pressure,improving the living and healthy environment of urban residents,and promoting the urban ecological balance.Taking Chaowai district of Beijing as an example,this paper calculates the ecological value of trees including energy contribution,carbon sequestration,ability to improve rainfall runoff and aesthetic value by collecting the information of trees and the plot on which the trees are located through the i-Tree platform,which provides important reference value for the urban pocket park system planning to create low carbon comprehensive benefits.展开更多
In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge ...In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge are generally resource constrained devices in terms of energy consumption and computational power.Thus,trying to tackle this issue,in this paper,a fully automated end-to-end IoT system for real time monitoring of the status of a moving vehicle is proposed.The IoT system consists mainly of three components:(1)the ultra-lowpower consumptionWireless SensorNode(WSN),(2)the IoT gateway and(3)the IoT platform.In this scope,a selfpoweredWSN having ultra-low energy consumption(less than 10 mJ),which can be produced by environmental harvesting systems,is developed.WSN is used for collecting sensors’measurements from the vehicle and transmitting them to the IoT gateway,by exploiting a low energy communication protocol(i.e.,BLE).A powerful IoT gateway gathers the sensors’measurements,harmonizes,stores temporary and transmits them wirelessly,to a backend server(i.e.,LTE).And finally,the IoT platform,which in essence is a web application user interface(UI),used mainly for almost real time visualization of sensors’measurements,but also for sending alerts and control signals to enable actuators,installed in the vehicle near to the sensors field.The proposed system is scalable and it can be adopted for monitoring a large number of vehicles,thus providing a fully automatic IoT solution for vehicle fleet management.Moreover,it can be extended for simultaneous monitoring of additional parameters,supporting other low energy communication protocols and producing various kinds of alerts and control signals.展开更多
Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizo...Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizontal floating platform including a horizontal floating cable, vertical mooring cable and floating main body is proposed and described in this paper. It has the advantages of good maneuverability along with the current and multi-stage vibration isolation. The main application of this platform is to measure the ocean ambient noise coming from the wave fluctuation and the deterministic acoustic signals such as aquatic organisms, underwater targets and sailing vehicles. The influence of the current fluctuation on the attitude angle and flow induced vibration of cables and main body are analyzed with some previous sea test data. Moreover, the comparison between the vertical type platform used before and the horizontal type platform is also discussed. It is concluded that there is obvious relevance between the attitude angle and ocean current variation. Meanwhile, the abnormal influence on the main body is caused by the vibration transmission from the fluctuation of cables. There will be the influence on the accuracy of the acoustic measurement above 100 Hz, and the inherent vibration characteristic of the main body is the primary reason.展开更多
Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value...Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.展开更多
Ever-changing market conditions and a rapidly changing IT landscape call for fast and cheap ways to meet software demands. In order to tackle these problems, low-code development platforms (LCDPs) have emerged. These ...Ever-changing market conditions and a rapidly changing IT landscape call for fast and cheap ways to meet software demands. In order to tackle these problems, low-code development platforms (LCDPs) have emerged. These platforms are designed with the idea to limit recurring traditional hand-coding and programming. This article provides a theoretical overview of low-code solutions. The advantages and disadvantages of using LCDP in the creation of automated systems are considered. In conclusion, a conclusion is formulated about the prospects of using low-code technology.展开更多
文摘In order to make full use of the characteristics of commodity prices,merchants on e-commerce platforms have adopted the low-price marketing strategy.Regular promotional discounts can bring new vitality to the commodity sales market,but extreme discount marketing methods would lead to serious impacts on the sales of competing products,thus affecting the stable development of the online shopping market.The sales data of four electrical products using the false low-price marketing strategy on three e-commerce platforms(Taobao,JD,and Amazon)were used in this study.The sales data from different e-commerce platforms and different time periods were analyzed,and one-way ANOVA was used on the factors affecting the effect of marketing strategy.The results showed that there is a significant difference between the direct marketing of high-priced products and low-priced products on Taobao;the difference between the marketing effects of high-priced products and mid-priced products on JD and Amazon is significant.This analysis would help businesses formulate reasonable marketing strategies and promote the stable development of the online shopping market.
基金supported by the National Natural Science Foundation of China(21776309,22122807 and 21706283)。
文摘The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,2021YFB3601300)National Natural Science Foundation of China(Nos.62001014 and 62171013)。
文摘We demonstrate in-plane field-free-switching spin-orbit torque(SOT)magnetic tunnel junction(MTJ)devices that are capable of low switching current density,fast speed,high reliability,and,most importantly,manufactured uniformly by the 200-mm-wafer platform.The performance of the devices is systematically studied,including their magnetic properties,switch-ing behaviors,endurance and data retention.The successful integration of SOT devices within the 200-mm-wafer manufactur-ing platform provides a feasible way to industrialize SOT MRAMs.It is expected to obtain excellent performance of the devices by further optimizing the MTJ film stacks and the corresponding fabrication processes in the future.
基金Supported by the China National Science and Technology Major Project(2016ZX05007-002)
文摘Drilling,seismic and logging data were used to evaluate the hydrocarbon accumulation conditions of the mound-shoal complexes in the platform margin of the fourth member of Sinian Dengying Formation in the east side of the Mianzhu-Changning intracratonic rift in the Sichuan Basin.The four understandings are:(1)The platform margin belt of the Deng 4 Member can be divided into three sections,northern,middle and southern;the middle section is at the core of the Gaoshiti-Moxi paleouplift and the structural high now,while the southern and northern sections are at the slope of the paleouplift and the structural lows now;the three sections have similar development characteristics and reservoir features of platform margin mound-shoal complex.(2)In the margin of the east side of the rift,there are several faults nearly perpendicular to the platform margin belt,the faults divide the platform margin belt into rugged paleo-landform,and the high part developed platform margin mound-shoal complexes and the reservoirs are good in physical properties,while the low part developed inter-beach depression and no mound-shoal complexes,where the reservoirs are poor in physical properties.(3)The six groups of faults nearly perpendicular to the platform margin belt divide the platform margin belt into seven large mound-shoal complexes which have similar hydrocarbon accumulation conditions and accumulation evolution process and are rich in petroleum.(4)The inter shoal depressions between the mound-shoal complexes are characterized by tighter lithology,which can block the updip direction of the mounds and shoals at the lower part of the slope of the paleouplift and are favorable for the later preservation of mound-shoal gas reservoirs.This has been proved by Well Jiaotan 1 and Heshen 2 drilled successfully.The mound-shoal complexes on the platform margin of the structural slope area have a good exploration prospect.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金This work was supported by Institute for Information&communications Technology Promotion(IITP)grant funded by the Korea government(MSIT)(No.2019-0-00685Free space optical communication based vertical mobile network).
文摘As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much that existing backhaul networks soon will not be able to support all traffic demands.To support these needs in future 6G mobile systems,the establishment of an additional backhaul wireless network is considered essential.As one of the solutions,a wireless backhaul network based on an aerial platform has been proposed.In order to explore the potential of aerial platforms as wireless backhaul networks,in this paper,the categories for wireless backhaul networks based on aerial platforms are investigated.This paper includes a survey of the definitions and characteristics of low altitude platforms(LAPs)and high altitude platforms(HAPs),as well as channel models according to the atmosphere.For wireless backhaul network designs based on aerial platforms,altitude and platform selection options,deployment options,energy issues,and security based on target location and performance were considered in the analysis and investigation.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043).
文摘Low carbon landscape development is an emerging approach of landscape design,which aims to promote sustainable development,and reduce energy consumption and environmental impact by reducing carbon emissions.As an important component of low carbon landscape construction,the construction of urban pocket park system based on mini-parks plays a crucial role in improving the urban greening level,increasing the urban green space,alleviating the urban pressure,improving the living and healthy environment of urban residents,and promoting the urban ecological balance.Taking Chaowai district of Beijing as an example,this paper calculates the ecological value of trees including energy contribution,carbon sequestration,ability to improve rainfall runoff and aesthetic value by collecting the information of trees and the plot on which the trees are located through the i-Tree platform,which provides important reference value for the urban pocket park system planning to create low carbon comprehensive benefits.
基金support from the European Union’s Horizon 2020 Research and Innovation Programme for project InComEss under Grant Agreement Number 862597.
文摘In the era of the Internet of Things(IoT),the ever-increasing number of devices connected to the IoT networks also increases the energy consumption on the edge.This is prohibitive since the devices living on the edge are generally resource constrained devices in terms of energy consumption and computational power.Thus,trying to tackle this issue,in this paper,a fully automated end-to-end IoT system for real time monitoring of the status of a moving vehicle is proposed.The IoT system consists mainly of three components:(1)the ultra-lowpower consumptionWireless SensorNode(WSN),(2)the IoT gateway and(3)the IoT platform.In this scope,a selfpoweredWSN having ultra-low energy consumption(less than 10 mJ),which can be produced by environmental harvesting systems,is developed.WSN is used for collecting sensors’measurements from the vehicle and transmitting them to the IoT gateway,by exploiting a low energy communication protocol(i.e.,BLE).A powerful IoT gateway gathers the sensors’measurements,harmonizes,stores temporary and transmits them wirelessly,to a backend server(i.e.,LTE).And finally,the IoT platform,which in essence is a web application user interface(UI),used mainly for almost real time visualization of sensors’measurements,but also for sending alerts and control signals to enable actuators,installed in the vehicle near to the sensors field.The proposed system is scalable and it can be adopted for monitoring a large number of vehicles,thus providing a fully automatic IoT solution for vehicle fleet management.Moreover,it can be extended for simultaneous monitoring of additional parameters,supporting other low energy communication protocols and producing various kinds of alerts and control signals.
基金financially supported by the National Natural Science Foundation of China(Grant No.61801275)Major Science and Technology Innovation This work is financially supported by the Stable Supporting Fund of Acoustic Science and Technology Laboratory(Grant No.SSJSWDZC2018014)+3 种基金the Major Science and Technology Innovation Project of Shandong Province(Grant No.2018YFJH0707)the Key Research and Development Plan(International Cooperation)Project of Shandong Province(Grant No.2018JHZ002)the International Science and Technology Cooperation Project of Shandong Academy of Sciences(Grant No.2019GHZD01)the provincial Key Research and Development Program of Shandong(Military and Civilian Integration)(Grant No.2016JMRH0541)
文摘Ocean vector acoustic measurement is feasible affected by the hydrodynamic interference caused by the flow fluctuations and structural vibrations, especially in the very-low-frequency monitoring. Hence, a novel horizontal floating platform including a horizontal floating cable, vertical mooring cable and floating main body is proposed and described in this paper. It has the advantages of good maneuverability along with the current and multi-stage vibration isolation. The main application of this platform is to measure the ocean ambient noise coming from the wave fluctuation and the deterministic acoustic signals such as aquatic organisms, underwater targets and sailing vehicles. The influence of the current fluctuation on the attitude angle and flow induced vibration of cables and main body are analyzed with some previous sea test data. Moreover, the comparison between the vertical type platform used before and the horizontal type platform is also discussed. It is concluded that there is obvious relevance between the attitude angle and ocean current variation. Meanwhile, the abnormal influence on the main body is caused by the vibration transmission from the fluctuation of cables. There will be the influence on the accuracy of the acoustic measurement above 100 Hz, and the inherent vibration characteristic of the main body is the primary reason.
文摘Thermal loss of exhaust flue gas accounts for the largest proportion of the total boiler thermal loss. Nowadays in China, the exhaust gas temperature in many thermal power plants is much higher than the designed value, thus, the recycle and reuse of the waste heat of tail flue gas is necessary. However, lower exhaust gas temperature will aggravate low temperature corrosion of the tail heating surface, which also causes huge economic losses. In order to solve this problem, this paper designs a monitoring experiment platform of flue gas low temperature corrosion, which can measure the corrosion condition of different materials by different flue gas compositions and temperature corrosion speeds. Besides, effects of low temperature corrosion factors are analyzed to find the best exhaust gas temperature and the surface material of tail heating surface.
文摘Ever-changing market conditions and a rapidly changing IT landscape call for fast and cheap ways to meet software demands. In order to tackle these problems, low-code development platforms (LCDPs) have emerged. These platforms are designed with the idea to limit recurring traditional hand-coding and programming. This article provides a theoretical overview of low-code solutions. The advantages and disadvantages of using LCDP in the creation of automated systems are considered. In conclusion, a conclusion is formulated about the prospects of using low-code technology.