Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrod...Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrode remain challenging due to the poor mechanical processibility and inferior electrochemical performance of metallic Li.Here,mechanico-chemical synthesis of robust ultrathin Li/Li_(3)P(LLP)composite foils(~15µm)is demonstrated by employing repeated mechanical rolling/stacking operations using red P and metallic Li as raw materials.The in-situ formed Li+-conductive Li_(3)P nanoparticles in metallic Li matrix and their tight bonding strengthen the mechanical durability and enable the successful fabrication of free-standing ultrathin Li metal composite foil.Besides,it also reduces the electrochemical Li nucleation barrier and homogenizes Li plating/stripping behavior.When matching to high-voltage LiCoO_(2),the full cell with a low negative/positive(N/P)capacity ratio of~1.5 offers a high energy density of~522 W·h·kg^(-1) at 0.5 C based on the mass of cathode and anode.Taking into account its facile manufacturing,potentially low cost,and good electrochemical performance,we believe that such an ultrathin composite Li metal foil design with nanoparticle-dispersion-strengthened mechanism may boost the development of high energy density Li metal batteries.展开更多
The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulat...The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD.展开更多
基金Y.S.acknowledges the financial support by National Natural Science Foundation of China(No.52272207)L.F.thanks the financial support by National Natural Science Foundation of China(No.22209031)+1 种基金Guizhou Provincial Basic Research Program(Natural Science)(No.QKHJC-ZK[2023]YB046)Natural Science Special Foundation of Guizhou University(No.X2022122 Special Post B).
文摘Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrode remain challenging due to the poor mechanical processibility and inferior electrochemical performance of metallic Li.Here,mechanico-chemical synthesis of robust ultrathin Li/Li_(3)P(LLP)composite foils(~15µm)is demonstrated by employing repeated mechanical rolling/stacking operations using red P and metallic Li as raw materials.The in-situ formed Li+-conductive Li_(3)P nanoparticles in metallic Li matrix and their tight bonding strengthen the mechanical durability and enable the successful fabrication of free-standing ultrathin Li metal composite foil.Besides,it also reduces the electrochemical Li nucleation barrier and homogenizes Li plating/stripping behavior.When matching to high-voltage LiCoO_(2),the full cell with a low negative/positive(N/P)capacity ratio of~1.5 offers a high energy density of~522 W·h·kg^(-1) at 0.5 C based on the mass of cathode and anode.Taking into account its facile manufacturing,potentially low cost,and good electrochemical performance,we believe that such an ultrathin composite Li metal foil design with nanoparticle-dispersion-strengthened mechanism may boost the development of high energy density Li metal batteries.
基金co-supported by the National Natural Science Foundation of China (Nos: 61002033, 61370013)the Program for New Century Excellent Talents in University and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China
文摘The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD.