Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low ...Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.展开更多
Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, a...Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.展开更多
Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALl). However, LPD solution for treating acute kidney injury secondary to ALl has not been reported. The present study was performed...Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALl). However, LPD solution for treating acute kidney injury secondary to ALl has not been reported. The present study was performed to examine the renoprotective effect of LPD solution in ALl induced by oleic acid (OA) in piglets. Methods Twelve animals that suffered an ALl induced by administration of OA into the right atrium were divided into two groups: the placebo group (n=6) pretreated with normal saline and the LPD group (n=6), pretreated with LPD solution. LPD solution was injected intravenously at a dose of 12.5 ml/kg via the auricular vein 1 hour before OA injection. Results All animals survived the experiments with mild histopathological injury to the kidney. There were no significant differences in mean arterial pressure (MAP), creatinin and renal damage scores between the two groups. Compared with the placebo group, the LPD group had better gas exchange parameters at most of the observation points ((347.0±12.6) mmHg vs. (284.3±11.3) mmHg at 6 hours after ALl, P 〈0.01). After 6 hours of treatment with OA, the plasma concentrations of NGAL and intedeukin (IL)-6 in both groups increased dramatically compared to baseline ((6.0±0.6) and (2.50±0.08) folds in placebo group; and (2.5±0.5) and (1.40±0.05) folds in LPD group), but the change of both parameters in the LPD group was significantly lower (P 〈0.01) than in the placebo group. And 6 hours after ALl the kidney tissue concentration of IL-6 in the LPD group ((165.7 ± 22.5) pg·m-1·g-1 protein) was significantly lower (P 〈0.01) than that in placebo group ((67.2± 25.3) pg·m-1·g-1 protein). Conclusion These findings suggest that pretreatment with LPD solution via systemic administration might attenuate acute kidney injury and the cytokine response of IL-6 in the ALl piglet model induced by OA injection.展开更多
Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches ...Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.展开更多
文摘Different drillingfluid systems are designed according to mineral composition,lithology and wellbore stability of different strata.In the present study,the conversion of a non-dispersed polymer drillingfluid into a low potas-sium anti-collapsing drillingfluid is investigated.Since the two drillingfluids belong to completely different types,the key to this conversion is represented by new inhibitors,dispersants and water-loss agents by which a non-dispersed drillingfluid can be turned into a dispersed drillingfluid while ensuring wellbore stability and reason-able rheology(carrying sand—inhibiting cuttings dispersion).In particular,the(QYZ-1)inhibitors and(FSJSS-2)dispersants are used.The former can inhibit the hydration expansion capacity of clay,reduce the dynamic shear force and weaken the viscosity;the latter can improve the sealing effect and reduce thefiltrate loss.The results have shown that after adding a reasonable proportion of these substances(QYZ-1:FSJSS-2)to the non-dispersed polymer drillingfluid,while the apparent viscosity,plastic viscosity,structural viscosity andfluidity index under-went almost negligible changes,the dynamic plastic ratio increased,and thefiltration loss decreased significantly,thereby indicating good compatibility.According to the tests(conducted in the Leijia area),the density was 1.293 g/cm3,and after standing for 24 h,the SF(static settlement factor)was 0.51.Moreover,thefiltration loss was reduced to 4.0 mL,the rolling recovery rate reached 96.92%,with excellent plugging and anti-collapse performances.
基金This study was supported by grants from the National Natural Science Foundation of China (No. 81070055) and the Beijing City Education Committee (No. PXM2011_014226 _07_000060)
文摘Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30971380 and No. 31071026) and by the National Excellent Doctoral Dissertation of China.
文摘Background Low potassium dextran (LPD) solution can attenuate acute lung injury (ALl). However, LPD solution for treating acute kidney injury secondary to ALl has not been reported. The present study was performed to examine the renoprotective effect of LPD solution in ALl induced by oleic acid (OA) in piglets. Methods Twelve animals that suffered an ALl induced by administration of OA into the right atrium were divided into two groups: the placebo group (n=6) pretreated with normal saline and the LPD group (n=6), pretreated with LPD solution. LPD solution was injected intravenously at a dose of 12.5 ml/kg via the auricular vein 1 hour before OA injection. Results All animals survived the experiments with mild histopathological injury to the kidney. There were no significant differences in mean arterial pressure (MAP), creatinin and renal damage scores between the two groups. Compared with the placebo group, the LPD group had better gas exchange parameters at most of the observation points ((347.0±12.6) mmHg vs. (284.3±11.3) mmHg at 6 hours after ALl, P 〈0.01). After 6 hours of treatment with OA, the plasma concentrations of NGAL and intedeukin (IL)-6 in both groups increased dramatically compared to baseline ((6.0±0.6) and (2.50±0.08) folds in placebo group; and (2.5±0.5) and (1.40±0.05) folds in LPD group), but the change of both parameters in the LPD group was significantly lower (P 〈0.01) than in the placebo group. And 6 hours after ALl the kidney tissue concentration of IL-6 in the LPD group ((165.7 ± 22.5) pg·m-1·g-1 protein) was significantly lower (P 〈0.01) than that in placebo group ((67.2± 25.3) pg·m-1·g-1 protein). Conclusion These findings suggest that pretreatment with LPD solution via systemic administration might attenuate acute kidney injury and the cytokine response of IL-6 in the ALl piglet model induced by OA injection.
基金support from the Key Project of Guangdong Province Nature Science Foundation (No. 2017B030311013)the Scientific and Technological Plan of Guangdong Province, Guangzhou and Qingyuan City, China (Nos. 2019B090905005, 2019B090911004, 2017B020227009, 2019DZX008, 2019A004)+2 种基金the financial support from the National Key R&D Program of China (2018YFB1502600)the National Natural Science Foundation of China (No. 51922042 and 51872098)the Sino-Singapore International Joint Research Institute (SSIJRI), Guangzhou 510700, China.
文摘Potassium-ions batteries(PIBs)are attracting increasing attention as up-and-coming youngster in largescale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we synthesize K-deficient layered manganese-based oxides(P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2))and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides(K_(x)MnO_(2))group,P2-K_(0.21)MnO_(2) delivers high discharge capacity of 99.3 mAh g^(-1) and P3-K_(0.23)MnO_(2) exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K_(0.21)MnO_(2) and P3-K_(0.23)MnO_(2) with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better understanding for the potassium storage in K-deficient layered K_(x)MnO_(2)(x≤0.23),possessing an important basic scientific significance for the exploitation and application of layered K_(x)MnO_(2) in PIBs.