Designing low power sensor networks has been the general goal of design engineers, scientist and end users. It is desired to have a wireless sensor network (WSN) that will run on little power (if possible, none at all...Designing low power sensor networks has been the general goal of design engineers, scientist and end users. It is desired to have a wireless sensor network (WSN) that will run on little power (if possible, none at all) thereby saving cost, and the inconveniences of having to replace batteries in some difficult to access areas of usage. Previous researches on WSN energy models have focused less on the aggregate transceiver energy consumption models as compared to studies on other components of the node, hence a large portion of energy in a WSN still get depleted through data transmission. By studying the energy consumption map of the transceiver of a WSN node in different states and within state transitions, we propose in this paper the energy consumption model of the transceiver unit of a typical sensor node and the transceiver design parameters that significantly influences this energy consumption. The contribution of this paper is an innovative energy consumption model based on simple finite automata which reveals the relationship between the aggregate energy consumption and important power parameters that characterize the energy consumption map of the transceiver in a WSN;an ideal tool to design low power WSN.展开更多
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error...Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.展开更多
This paper presents the experimental results of a low-power RF transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. In order to make an adaptive RF transmitter, several factors must be cons...This paper presents the experimental results of a low-power RF transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. In order to make an adaptive RF transmitter, several factors must be considered. The most important factors are performances, power consumption, output power, noise factor, and cost. The RF transmitter comprises a quadrature passive mixer, and a power amplifier. The proposed RF transmitter consumes only 10.8-mW under a supply voltage of 1.8-V.展开更多
Since power of a wireless sensor node is limited, low power communication technology has been required. M-ary frequency shift keying (MFSK) modulation with orthogonal signals is one of the methods to decrease the powe...Since power of a wireless sensor node is limited, low power communication technology has been required. M-ary frequency shift keying (MFSK) modulation with orthogonal signals is one of the methods to decrease the power. However, if the amount of transmitted data including such as an identification number (ID) of a node and measured data is small, a ratio of the data length to the total packet length, which means transmission efficiency, becomes quite low. Because a preamble and error check codes are generally added to a packet for synchronization between a transmitter and a receiver and for decrease in reception errors, respectively. In this research, we have developed a method with digital filters which eliminates the other signals from time series frequency spectra not to use a preamble and error check codes. Although estimated synchronization loss of the method was less than 1.6 dB, it was found that the loss of the method on error packet rate was almost 0 dB at more than 0.001 of packet error rate by a simulation made by BASIC. These results indicate a possibility to realize that a packet which consists of only two symbols can be received with no error if the transmitted data is less than 14 bits using 128-FSK.展开更多
A new pulse stream neuron circuit is presented, which can be obtained in the digital CMOS process and combines both the merits of digital circuits and analog ones. The output is expressed by the frequency of the pulse...A new pulse stream neuron circuit is presented, which can be obtained in the digital CMOS process and combines both the merits of digital circuits and analog ones. The output is expressed by the frequency of the pulses with transfer characteristic, which is correspondent with the ideal sigmoid curve perfectly. Moreover, the pulse\|active strategy is introduced into the design of this CMOS pulse stream neuron circuit for the first time in order to reduce the power dissipation, which is applicable to the low\|power design of mixed\|signal circuits,too. A simple technical process and compact architecture make this circuit work at a higher speed and with lower power dissipation and smaller area.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能...为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。展开更多
在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自...在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。展开更多
当前拓扑识别技术难以反映潮流特性对拓扑识别的影响,基于配电网现有量测数据,通过分析节点间的电气距离,提出了虚拟阻抗的概念。将节点间具备电气意义的且与电气距离成正相关的连续变量定义为虚拟阻抗,并提出了一种基于虚拟阻抗的低压...当前拓扑识别技术难以反映潮流特性对拓扑识别的影响,基于配电网现有量测数据,通过分析节点间的电气距离,提出了虚拟阻抗的概念。将节点间具备电气意义的且与电气距离成正相关的连续变量定义为虚拟阻抗,并提出了一种基于虚拟阻抗的低压配电网拓扑识别方法。首先,构建以节点间虚拟阻抗为因变量的多元线性回归方程。然后,通过岭回归计算每一个单相电表与关口电表构成的回归方程的虚拟阻抗,根据计算结果快速判别出拓扑关系异常的电气设备。最后,建立基于导数动态时间弯曲(derivative dynamic time warping,DDTW)距离的校验模型,重新构建得到电气设备的正确拓扑关系,实现低压配电网拓扑关系的修正。以实际的低压配电网台区样本数据为依据,验证了所提方法的有效性。展开更多
LoRa(Long Range radio)系统在当前不断发展的低功率广域网(LPWAN)中处于相对领先地位。它的MAC层采用的是基于ALOHA的接入协议。该接入机制虽然简单易实现,但同时也容易加剧冲突和碰撞的发生,降低整个系统的通信性能。因此,需要研究多...LoRa(Long Range radio)系统在当前不断发展的低功率广域网(LPWAN)中处于相对领先地位。它的MAC层采用的是基于ALOHA的接入协议。该接入机制虽然简单易实现,但同时也容易加剧冲突和碰撞的发生,降低整个系统的通信性能。因此,需要研究多个终端同时占用信道资源时的相互干扰情况,而LoRa信号的扩频因子(SF)将决定信号的通信覆盖范围。因此,分析了干扰信号的SF与发送信号的SF相同以及不同时,干扰信号对发送信号解调性能的影响。实验结果表明,相同SF信号间的干扰影响相对较大,而干扰信号使用的SF与发送信号不同时,干扰的影响相对较小。通过理论分析,获得了接收端正确解调时所要求的信干比(SIR)。可见,不同SF的LoRa信号可看作伪正交。展开更多
构建具有可靠供电能力的低压配电网具有重要意义,然而低压配电网供电能力受到低压配电变压器负载、低压配电网新能源消纳能力以及低压配电网供电电压3大要素影响。因此,该文基于低压配电网柔性互联技术提出考虑供电能力提升的低压配电...构建具有可靠供电能力的低压配电网具有重要意义,然而低压配电网供电能力受到低压配电变压器负载、低压配电网新能源消纳能力以及低压配电网供电电压3大要素影响。因此,该文基于低压配电网柔性互联技术提出考虑供电能力提升的低压配电网柔性互联规划方法,通过抽取影响低压配电网供电能力的主要场景建立低压配电网柔性互联规划框架。另外,针对该文多主体规划运行模型的不确定性,采用信息间隙决策理论(information gap decision theory,IGDT)与基于Wasserstein距离的分布鲁棒方法进行精细化建模。最后,采用MATLAB和CPLEX求解器在IEEE 38节点配电网上进行算例分析。仿真结果表明,该规划方法在有效提升低压配电网供电能力的同时具有更好的经济性。展开更多
文摘Designing low power sensor networks has been the general goal of design engineers, scientist and end users. It is desired to have a wireless sensor network (WSN) that will run on little power (if possible, none at all) thereby saving cost, and the inconveniences of having to replace batteries in some difficult to access areas of usage. Previous researches on WSN energy models have focused less on the aggregate transceiver energy consumption models as compared to studies on other components of the node, hence a large portion of energy in a WSN still get depleted through data transmission. By studying the energy consumption map of the transceiver of a WSN node in different states and within state transitions, we propose in this paper the energy consumption model of the transceiver unit of a typical sensor node and the transceiver design parameters that significantly influences this energy consumption. The contribution of this paper is an innovative energy consumption model based on simple finite automata which reveals the relationship between the aggregate energy consumption and important power parameters that characterize the energy consumption map of the transceiver in a WSN;an ideal tool to design low power WSN.
文摘Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.
文摘This paper presents the experimental results of a low-power RF transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. In order to make an adaptive RF transmitter, several factors must be considered. The most important factors are performances, power consumption, output power, noise factor, and cost. The RF transmitter comprises a quadrature passive mixer, and a power amplifier. The proposed RF transmitter consumes only 10.8-mW under a supply voltage of 1.8-V.
文摘Since power of a wireless sensor node is limited, low power communication technology has been required. M-ary frequency shift keying (MFSK) modulation with orthogonal signals is one of the methods to decrease the power. However, if the amount of transmitted data including such as an identification number (ID) of a node and measured data is small, a ratio of the data length to the total packet length, which means transmission efficiency, becomes quite low. Because a preamble and error check codes are generally added to a packet for synchronization between a transmitter and a receiver and for decrease in reception errors, respectively. In this research, we have developed a method with digital filters which eliminates the other signals from time series frequency spectra not to use a preamble and error check codes. Although estimated synchronization loss of the method was less than 1.6 dB, it was found that the loss of the method on error packet rate was almost 0 dB at more than 0.001 of packet error rate by a simulation made by BASIC. These results indicate a possibility to realize that a packet which consists of only two symbols can be received with no error if the transmitted data is less than 14 bits using 128-FSK.
基金Project Supported by National Natural Science Foundation of China Under Grant No.6963 60 3 0
文摘A new pulse stream neuron circuit is presented, which can be obtained in the digital CMOS process and combines both the merits of digital circuits and analog ones. The output is expressed by the frequency of the pulses with transfer characteristic, which is correspondent with the ideal sigmoid curve perfectly. Moreover, the pulse\|active strategy is introduced into the design of this CMOS pulse stream neuron circuit for the first time in order to reduce the power dissipation, which is applicable to the low\|power design of mixed\|signal circuits,too. A simple technical process and compact architecture make this circuit work at a higher speed and with lower power dissipation and smaller area.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
文摘为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。
文摘在6LoWPAN(IPv6 over Low-power Wireless Personal Area Network)的基础上,该文提出应用于物联网的寻址策略,实现基于IEEE 802.15.4协议的底层异构网络与互联网的实时通信。寻址策略包括IPv6地址自动配置和报头压缩。采用的分层地址自动配置策略,首先在底层网络内部允许节点使用16位短地址导出的链路本地地址进行数据分组传输,该链路本地地址需通过执行基于分簇的重复地址检测机制保证唯一性;其次,每个底层网络中的Sink节点通过上层IP路由器获取全球路由前缀,并与接口标识符相结合,形成Sink节点的全球地址,实现底层网络与互联网的数据交换。同时,通过在报头压缩编码中植入链路本地地址和全球地址控制位,提出了一种适用于物联网应用的报头压缩方案IIPHC(IoTs IPv6 Header Compression)。如果地址类型为链路本地地址,则采用简单灵活的IIPHC1方案,如果地址类型为全球地址,则采用相对复杂但有效的IIPHC2方案。仿真及测试结果表明,基于6LoWPAN的物联网寻址策略在网络开销、时延、吞吐量、能耗等性能方面存在一定的优越性。
文摘当前拓扑识别技术难以反映潮流特性对拓扑识别的影响,基于配电网现有量测数据,通过分析节点间的电气距离,提出了虚拟阻抗的概念。将节点间具备电气意义的且与电气距离成正相关的连续变量定义为虚拟阻抗,并提出了一种基于虚拟阻抗的低压配电网拓扑识别方法。首先,构建以节点间虚拟阻抗为因变量的多元线性回归方程。然后,通过岭回归计算每一个单相电表与关口电表构成的回归方程的虚拟阻抗,根据计算结果快速判别出拓扑关系异常的电气设备。最后,建立基于导数动态时间弯曲(derivative dynamic time warping,DDTW)距离的校验模型,重新构建得到电气设备的正确拓扑关系,实现低压配电网拓扑关系的修正。以实际的低压配电网台区样本数据为依据,验证了所提方法的有效性。
文摘LoRa(Long Range radio)系统在当前不断发展的低功率广域网(LPWAN)中处于相对领先地位。它的MAC层采用的是基于ALOHA的接入协议。该接入机制虽然简单易实现,但同时也容易加剧冲突和碰撞的发生,降低整个系统的通信性能。因此,需要研究多个终端同时占用信道资源时的相互干扰情况,而LoRa信号的扩频因子(SF)将决定信号的通信覆盖范围。因此,分析了干扰信号的SF与发送信号的SF相同以及不同时,干扰信号对发送信号解调性能的影响。实验结果表明,相同SF信号间的干扰影响相对较大,而干扰信号使用的SF与发送信号不同时,干扰的影响相对较小。通过理论分析,获得了接收端正确解调时所要求的信干比(SIR)。可见,不同SF的LoRa信号可看作伪正交。
文摘构建具有可靠供电能力的低压配电网具有重要意义,然而低压配电网供电能力受到低压配电变压器负载、低压配电网新能源消纳能力以及低压配电网供电电压3大要素影响。因此,该文基于低压配电网柔性互联技术提出考虑供电能力提升的低压配电网柔性互联规划方法,通过抽取影响低压配电网供电能力的主要场景建立低压配电网柔性互联规划框架。另外,针对该文多主体规划运行模型的不确定性,采用信息间隙决策理论(information gap decision theory,IGDT)与基于Wasserstein距离的分布鲁棒方法进行精细化建模。最后,采用MATLAB和CPLEX求解器在IEEE 38节点配电网上进行算例分析。仿真结果表明,该规划方法在有效提升低压配电网供电能力的同时具有更好的经济性。