Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about t...Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investigated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.展开更多
This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance senso...This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.展开更多
Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis dur...Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis during blood delivery.In this paper,a new valveless piezoelectric(PZT)pump with streamlined flow tubes(streamlined pump)is proposed.The design method and the working principle of the pump are analyzed.The velocity streamlines are simulated,and the results demonstrate that there are no obvious vortexes in the flow tube of the streamlined pump.Five prototype pumps(two cone pumps and three streamlined pumps)are designed and fabricated to perform flow rate and flow resistance experiments.The experimental results illustrate that the maximum flow rate of the streamlined pump is 142 mL/min,which is 179%higher than that of the cone piezoelectric pump,demonstrating that the streamlined pump has a large flow rate performance.This research provides an inspiration for future research on simple structure,low vortex and large flow rate volume-type pumps,and also provides a useful solution for thrombosis preventing.展开更多
The qualitative and quantitative assessment of gas flow has become increasingly relevant in the use of everyday systems. The micro flow sensor, developed by Innovative Sensor Technology AG (Switzerland), is by princ...The qualitative and quantitative assessment of gas flow has become increasingly relevant in the use of everyday systems. The micro flow sensor, developed by Innovative Sensor Technology AG (Switzerland), is by principle a calorimetric flow sensor produced as a micro system on a glass substrate by means of photolithography and glass etching technology. These structures are arranged as a platinum micro heater and sensor in a Wheatstone bridge. The subsequent etching process produces an exposed area of polyimide membrane that is only a few microns thick and includes the resistive sensor structure as the active area. In addition, the RTD (resistance temperature detector) technology included on the sensor allows for the implementation of a variety of electronic biasing and signal processing modes. Since the sensor can be powered and the bridge can be measured in both CTA (constant temperature anemometer) and calorimetric mode, new possibilities are presented for both low and high flow rates with regard to temperature compensation, self-calibration and self-monitoring.展开更多
The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir press...The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.展开更多
Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoin...Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoing trabeculectomy. Twelve eyes of 12 patients underwent LTT, and 17 eyes of 17 patients underwent CT. Surgical success was defined as meeting each target intraocular pressure (IOP) without additional medication or further glaucoma surgery. A Kaplan-Meier survival analysis was used to estimate survival rate. Incidences of surgical complications were also assessed. Results: The median postoperative IOP 2 years after surgery were 10.0 mmHg (interquartile range [IQR] 8.5 - 12.0 mmHg) in the LTT group and 16.0 mmHg (IQR, 14.0 - 18.5 mmHg) in the CT group (P = 0.000). Estimated survival rates for patients who underwent the two types of trabeculectomy were significantly different with all IOP criteria of 10, 12 and 14 mmHg (P Conclusion: LTT provided more chances to maintain low postoperative IOP and had no more vision-threatening complication than those of CT.展开更多
The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the fi...The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit展开更多
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeabili...Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.展开更多
The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get...The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films.展开更多
Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating ...Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.展开更多
In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The ...In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.展开更多
This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design o...This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.展开更多
After analyzing many studies of fluid flow theory of multi-porous media in low and extra-low permeability reservoirs and the numerical simulation of non-Darcy flow, we found that a negative flow rate occurs in the exi...After analyzing many studies of fluid flow theory of multi-porous media in low and extra-low permeability reservoirs and the numerical simulation of non-Darcy flow, we found that a negative flow rate occurs in the existing non-Darcy flow equation, which is unreasonable. We believe that the existing equation can only be considered as a discriminant to judging Darcy flow or non-Darcy flow, and cannot be taken as a fluid flow governing equation of multi-porous media. Our analysis of the experimental results shows that the threshold pressure gradient(TPG) of low and extra-low permeability reservoirs is excessively high, and does not conform to fluid flow through multi-porous media in the actual reservoir situation. Therefore, we present a reasonable TPG ranging from 0.006 to 0.04 MPa/m at the well depth of 1500 m and oil drainage distance of 500 m. The results of our study also indicate that the non-Darcy flow phenomenon will disappear when the TPG reaches a certain value. In addition, the TPG or non-Darcy flow in low and extra-low permeability reservoirs does not need to be considered in the productivity prediction and reservoir numerical simulation. At present, the black oil model or dual-porous media is suitable for simulating low and extra-low permeability reservoirs.展开更多
The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion...The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.展开更多
AIM To investigate the acute effects of stochastic resonance whole body vibration(SR-WBV), including muscle relaxation and cardiovascular activation.METHODS Sixty-four healthy students participated. The participants w...AIM To investigate the acute effects of stochastic resonance whole body vibration(SR-WBV), including muscle relaxation and cardiovascular activation.METHODS Sixty-four healthy students participated. The participants were randomly assigned to sham SR-WBV training at a low intensity(1.5 Hz) or a verum SR-WBV training at a higher intensity(5 Hz). Systolic blood pressure(SBP), diastolic blood pressure(DBP), heart rate(HR) and selfreported muscle relaxation were assessed before and immediately after SR-WBV.RESULTS Two factorial analyses of variance(ANOVA) showed a significant interaction between pre- vs post-SR-WBVmeasurements and SR-WBV conditions for muscle relaxation in the neck and back [F(1,55) = 3.35, P = 0.048, η2 = 0.07]. Muscle relaxation in the neck and back increased in verum SR-WBV, but not in sham SR-WBV. No significant changes between pre- and post-training levels of SBD, DBD and HR were observed either in sham or verum SR-WBV conditions. With verum SR-WBV, improved muscle relaxation was the most significant in participants who reported the experience of back, neck or shoulder pain more than once a month(P < 0.05).CONCLUSION A single session of SR-WBV increased muscle relaxation in young healthy individuals, while cardiovascular load was low. An increase in musculoskeletal relaxation in the neck and back is a potential mediator of pain reduction in preventive worksite SR-WBV trials.展开更多
In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rot...In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction.展开更多
In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this alg...In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.展开更多
This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Math numbers (from 0.5 - 1.1)...This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Math numbers (from 0.5 - 1.1), Reynolds numbers (from 0.4e+5 - 3.0e+5), flow incidence (-15 - 15 degrees) and three levels of free-stream tur- bulence intensities (2, 5 and 10%). The experimental part of the work was performed in a high-speed linear cas- cade wind tunnel. The increased levels of turbulence were achieved by a passive grid placed at the cascade inlet. A two-dimensional flow field at the center of the blade was traversed pitch-wise upstream and downstream the cascade by means of a five-bole probe and a needle pressure probe, respectively. The blade loading was measured using the surface pressure taps evenly deployed at the blade mid-span along the suction and the pressure side. The inlet turbulence was investigated using the constant temperature anemometer technique with a dual sensor probe. Experimentally evaluated values of turbulent kinetic energy and its dissipation rate were then used as inputs for the numerical simulations. An in-house code based on a system of the Favre-averaged Navier-Stokes equation closed by a two-equation k-co turbulence model was adopted for the predictions. The code utilizes an algebraic model of bypass transition valid both for attached as for separated flows taking in account the effect of free-stream turbulence and pressure gradient. The resulting comparison was carried out in terms of the kinetic en- ergy loss coefficient, distributions of downstream wakes and blade velocity. Additionally a flow visualization was performed by means of the Schlieren technique in order to provide a further understanding of the studied phe- nomena. A few selected cases with a particular interest in the attached and separated flow transition are compared and discussed.展开更多
文摘Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investigated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.
基金supported by the National Natural Science Foundation of China(Nos.51527805 and 11572220)
文摘This study aimed to obtain the production profiles of oil-in-water flow under low flow rate and high water-cut conditions in oil wells.A combination production profile logging composed of an arc-type conductance sensor(ATCS)and a cross-correlation flow meter(CFM)with a center body is proposed and experimentally evaluated.The ATCS is designed for water holdup measurement,whereas the CFM with a center body is proposed to obtain the mixture velocity.Then,a drift-flux model based on flow patterns is established to predict the individual-phase superficial velocity of oil-in-water flows.Results show that the ATCS possesses high resolution in water holdup measurement and that flow pattern information can be deduced from its signal through nonlinear time series analysis.The CFM can enhance the correlation of upstream and downstream signals and simplify the relationship between the cross-correlation velocity and mixture velocity.On the basis of the drift-flux model,individual-phase superficial velocities can be predicted with high accuracy for different flow patterns.
基金supported by the National Natural Science Foundation of China (No. 51375227)the Introduction of Talent Research Start-up Fund of Nanjing Institute of Technology(No. YKJ201960).
文摘Valveless piezoelectric pump is widely used in the medical,however,there is a general and difficult problem to be solved:Low vortex and large flow rate are not compatible,resulting in the blood prone to thrombosis during blood delivery.In this paper,a new valveless piezoelectric(PZT)pump with streamlined flow tubes(streamlined pump)is proposed.The design method and the working principle of the pump are analyzed.The velocity streamlines are simulated,and the results demonstrate that there are no obvious vortexes in the flow tube of the streamlined pump.Five prototype pumps(two cone pumps and three streamlined pumps)are designed and fabricated to perform flow rate and flow resistance experiments.The experimental results illustrate that the maximum flow rate of the streamlined pump is 142 mL/min,which is 179%higher than that of the cone piezoelectric pump,demonstrating that the streamlined pump has a large flow rate performance.This research provides an inspiration for future research on simple structure,low vortex and large flow rate volume-type pumps,and also provides a useful solution for thrombosis preventing.
文摘The qualitative and quantitative assessment of gas flow has become increasingly relevant in the use of everyday systems. The micro flow sensor, developed by Innovative Sensor Technology AG (Switzerland), is by principle a calorimetric flow sensor produced as a micro system on a glass substrate by means of photolithography and glass etching technology. These structures are arranged as a platinum micro heater and sensor in a Wheatstone bridge. The subsequent etching process produces an exposed area of polyimide membrane that is only a few microns thick and includes the resistive sensor structure as the active area. In addition, the RTD (resistance temperature detector) technology included on the sensor allows for the implementation of a variety of electronic biasing and signal processing modes. Since the sensor can be powered and the bridge can be measured in both CTA (constant temperature anemometer) and calorimetric mode, new possibilities are presented for both low and high flow rates with regard to temperature compensation, self-calibration and self-monitoring.
基金National Natural Science Foundation of China (NO. Z02047)CNPC Program (NO.Z03014).
文摘The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.
文摘Purpose: To compare the success and complication rates of low target pressure trabeculectomy (LTT) and conventional trabeculectomy (CT). Methods: A retrospective study was conducted with consecutive patients undergoing trabeculectomy. Twelve eyes of 12 patients underwent LTT, and 17 eyes of 17 patients underwent CT. Surgical success was defined as meeting each target intraocular pressure (IOP) without additional medication or further glaucoma surgery. A Kaplan-Meier survival analysis was used to estimate survival rate. Incidences of surgical complications were also assessed. Results: The median postoperative IOP 2 years after surgery were 10.0 mmHg (interquartile range [IQR] 8.5 - 12.0 mmHg) in the LTT group and 16.0 mmHg (IQR, 14.0 - 18.5 mmHg) in the CT group (P = 0.000). Estimated survival rates for patients who underwent the two types of trabeculectomy were significantly different with all IOP criteria of 10, 12 and 14 mmHg (P Conclusion: LTT provided more chances to maintain low postoperative IOP and had no more vision-threatening complication than those of CT.
文摘The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit
基金supported by the National Natural Science Foundation of China(11102237)Program for Changjiang Scholars and Innovative Research Team in University(IRT1294)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20110133120012)China Scholarship Council(CSC)
文摘Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.
文摘The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films.
基金supported by the National Natural Science Foundation of China(Nos.11575273 and 11475239)
文摘Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.
基金supported by the National Natural Science Foundation of China (Grant No.50406017).
文摘In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.
基金the National Natural Science Foundation of China (Grant No.50406017)
文摘This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.
基金sponsored by National Key Project of Science and Technology of the Ministry of Science and Technology(MOST)(Grant No.2011ZX05043-002)
文摘After analyzing many studies of fluid flow theory of multi-porous media in low and extra-low permeability reservoirs and the numerical simulation of non-Darcy flow, we found that a negative flow rate occurs in the existing non-Darcy flow equation, which is unreasonable. We believe that the existing equation can only be considered as a discriminant to judging Darcy flow or non-Darcy flow, and cannot be taken as a fluid flow governing equation of multi-porous media. Our analysis of the experimental results shows that the threshold pressure gradient(TPG) of low and extra-low permeability reservoirs is excessively high, and does not conform to fluid flow through multi-porous media in the actual reservoir situation. Therefore, we present a reasonable TPG ranging from 0.006 to 0.04 MPa/m at the well depth of 1500 m and oil drainage distance of 500 m. The results of our study also indicate that the non-Darcy flow phenomenon will disappear when the TPG reaches a certain value. In addition, the TPG or non-Darcy flow in low and extra-low permeability reservoirs does not need to be considered in the productivity prediction and reservoir numerical simulation. At present, the black oil model or dual-porous media is suitable for simulating low and extra-low permeability reservoirs.
基金supported by the Innovation Foundation of BUAA for PhD Graduates(YWF-13-A01-014)
文摘The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.
基金Supported by the Swiss National Accident Insurance Fund(SUVA,Project "Stochastisches Resonanztraining") to Achim Elfering,Volker Schade and Lorenz Radlinger
文摘AIM To investigate the acute effects of stochastic resonance whole body vibration(SR-WBV), including muscle relaxation and cardiovascular activation.METHODS Sixty-four healthy students participated. The participants were randomly assigned to sham SR-WBV training at a low intensity(1.5 Hz) or a verum SR-WBV training at a higher intensity(5 Hz). Systolic blood pressure(SBP), diastolic blood pressure(DBP), heart rate(HR) and selfreported muscle relaxation were assessed before and immediately after SR-WBV.RESULTS Two factorial analyses of variance(ANOVA) showed a significant interaction between pre- vs post-SR-WBVmeasurements and SR-WBV conditions for muscle relaxation in the neck and back [F(1,55) = 3.35, P = 0.048, η2 = 0.07]. Muscle relaxation in the neck and back increased in verum SR-WBV, but not in sham SR-WBV. No significant changes between pre- and post-training levels of SBD, DBD and HR were observed either in sham or verum SR-WBV conditions. With verum SR-WBV, improved muscle relaxation was the most significant in participants who reported the experience of back, neck or shoulder pain more than once a month(P < 0.05).CONCLUSION A single session of SR-WBV increased muscle relaxation in young healthy individuals, while cardiovascular load was low. An increase in musculoskeletal relaxation in the neck and back is a potential mediator of pain reduction in preventive worksite SR-WBV trials.
基金This project is supported by National Natural Science Foundation of China (No. 50406017).
文摘In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction.
基金Supported by the Key Project of National Natural Science Foundation of China(Grant Nos.50736005,50636050)
文摘In the present paper,the classical pressure correction method was extended into low Mach number compressible flow regime by integrating equation of state into SIMPLE algorithm.The self-developed code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-lems,and the results showed good agreement with benchmark solutions and the Mach number can reach the magnitude of as low as 10-5.The attenuation of sound waves in viscous medium was then simulated.The results agree well with the analytical solutions given by theoretical acoustics.This demonstrated that the present method could also be implemented in acoustics field simulation,which is crucial for thermoacoustic simulation.
基金funded by the European Commission within the FP7 project "Efficient Systems and Propulsion for Small Aircraft ESPOSA",grant agreement No.ACP1-GA-2011-284859-ESPOSApartially supported by the Long-term Framework Advancement Plan provided by Ministry of Industry and Trade of the Czech Republic
文摘This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Math numbers (from 0.5 - 1.1), Reynolds numbers (from 0.4e+5 - 3.0e+5), flow incidence (-15 - 15 degrees) and three levels of free-stream tur- bulence intensities (2, 5 and 10%). The experimental part of the work was performed in a high-speed linear cas- cade wind tunnel. The increased levels of turbulence were achieved by a passive grid placed at the cascade inlet. A two-dimensional flow field at the center of the blade was traversed pitch-wise upstream and downstream the cascade by means of a five-bole probe and a needle pressure probe, respectively. The blade loading was measured using the surface pressure taps evenly deployed at the blade mid-span along the suction and the pressure side. The inlet turbulence was investigated using the constant temperature anemometer technique with a dual sensor probe. Experimentally evaluated values of turbulent kinetic energy and its dissipation rate were then used as inputs for the numerical simulations. An in-house code based on a system of the Favre-averaged Navier-Stokes equation closed by a two-equation k-co turbulence model was adopted for the predictions. The code utilizes an algebraic model of bypass transition valid both for attached as for separated flows taking in account the effect of free-stream turbulence and pressure gradient. The resulting comparison was carried out in terms of the kinetic en- ergy loss coefficient, distributions of downstream wakes and blade velocity. Additionally a flow visualization was performed by means of the Schlieren technique in order to provide a further understanding of the studied phe- nomena. A few selected cases with a particular interest in the attached and separated flow transition are compared and discussed.