Shale gas wells frequently suffer from liquid loading and insufficient formation pressure in the late stage of production.To address this issue,an intelligent production optimization method for low pressure and low pr...Shale gas wells frequently suffer from liquid loading and insufficient formation pressure in the late stage of production.To address this issue,an intelligent production optimization method for low pressure and low productivity shale gas well is proposed.Based on the artificial intelligence algorithms,this method realizes automatic production and monitoring of gas well.The method can forecast the production performance of a single well by using the long short-term memory neural network and then guide gas well production accordingly,to fulfill liquid loading warning and automatic intermittent production.Combined with adjustable nozzle,the method can keep production and pressure of gas wells stable automatically,extend normal production time of shale gas wells,enhance automatic level of well sites,and reach the goal of refined production management by making production regime for each well.Field tests show that wells with production regime optimized by this method increased 15%in estimated ultimate reserve(EUR).Compared with the development mode of drainage after depletion recovery,this method is more economical and can increase and stabilize production effectively,so it has a bright application prospect.展开更多
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condens...The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condensate liquid. During the early stage of depletion development, the production gas-oil ratio (GOR) and production capacity remain relatively stable, which is inconsistent with the conventional reverse condensate seepage law. In view of the static and dynamic conflict in development and production, indoor high-temperature and high-pressure PVT experiment was carried out to reveal the mist-like condensation phenomenon of fluids in the BZ19-6 formation. And the seepage characteristics of condensate gas reservoirs with various degrees of depletion under the condition of HTHP were analyzed based on production performance. The change rule of fluid phase state was analyzed in response to the characterization difficulties of the seepage mechanism. The fluid state was described using the miscible mechanism. And the interphase permeability interpolation coefficient was introduced based on interfacial tension. By doing so, the accurate characterization of the “single-phase flow of condensate gas-near-miscible mist-like quasi single-phase flow-oil-gas two-phase flow” during the development process was achieved. Then the accurate fitting of key indicators for oilfield development was completed, and the distribution law of formation pressure and the law of condensate oil precipitation under different reservoir conditions are obtained. Based on research results, the regulation strategy of variable flow rate production was developed. Currently, the work system has been optimized for 11 wells, achieving a “zero increase” in the GOS of the gas field and an annual oil increase of 22,000 cubic meters.展开更多
Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 i...Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.展开更多
A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were dev...A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.展开更多
A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability var...Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability varies with experimental law of the pseudo pressure drop, according to concepts of perturbable ellipses and equivalent developing regulations, the calculation method of stable production of hydraulically fractured gas well in low permeability reservoirs is investigated with threshold pressure. And productivity curve is drawn and analyzed. The result shows that, permeability modulus and threshold pressure have effect on production of fractured gas well. The higher the permeability modulus and the threshold pressure, the lower the production is. Therefore, the impact of stress sensitive and threshold pressure must he considered when analyzing the productivity of vertical fracture well in low permeability gas reservoir.展开更多
NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the...NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation.展开更多
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p...This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.展开更多
Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nu...Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nuclear medicine.The behavior of this type of target must be known to prevent eventual failures during radiation.The present study aims to assess,via prediction,the thermal–mechanical behavior,physical integrity,and geometric stability of targets under neutron radiation in a nuclear reactor.For this purpose,a numerical simulation using a three-dimensional finite element analysis model was performed to determine the thermal expansion and stress distribution in the target cladding.The neutronic calculation results,target material properties,and cooling parameters of the KAERI research group were used as inputs in our developed model.Thermally induced stress and deflection on the target were calculated using Ansys-Fluent codes,and the temperature profiles,as inputs of this calculation,were obtained from a CFD thermal–hydraulic model.The stress generated,induced by the pressure of fission gas release at the interface of the cladding target,was also estimated using the Redlich–Kwong equation of state.The results obtained using the bonded and unbonded target models considering the effect of the radiation heat combined with a fission gas release rate of approximately 3%show that the predicted thermal stress and deflection values satisfy the structural performance requirement and safety design.It can be presumed that the integrity of the target cladding is maintained under these conditions.展开更多
To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyse...To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyses and numerical simulation.The designed pressure coring system can obtain cores with length of 3 m and diameter of 50 mm at 70 MPa.The results of the ball-drop operation experiment demonstrate that differential motion assembly can effectively cut a safety pin by applying a tensile force of 4852 N,and it can lift the core tube through the center pole to complete a series of mechanical actions to seal the pressure.Additionally,by maintaining pressures at 70 MPa for 30 min,the pressure sealing capacity of the system was proven.Furthermore,a core sample with a diameter of 50 mm was obtained through a core drilling experiment and the coring performance of the pressure coring system was verified.This study can not only enrich the existing onshore coring technology but also provide a theoretical guide and design criteria for the development of similar pressure coring systems to meet the demand for deeper underground exploration.展开更多
Various mechanisms are employed to interpret the low water recovery during the shale-gas production period,such as extra-trapped water in the fracture network,water imbibition due to osmotic pressure and capillary pre...Various mechanisms are employed to interpret the low water recovery during the shale-gas production period,such as extra-trapped water in the fracture network,water imbibition due to osmotic pressure and capillary pressure.These lead to the difficulty of water flow,which could be described by lowvelocity non-Darcy's law known as threshold pressure gradient(TPG).In this paper we firstly employ the low-velocity non-Darcy's law to describe the water flow and use Darcy flow accounting for slip flow and free molecular flow mechanisms to model gas flow in the shale formation.The sensitive study using numerical simulation shows that the proposed flow model could model the low fracturing liquid recovery and that large pseudo TPG leads to lower fracturing liquid recovery.Thus,the proposed model would give new insight to model the low water recovery in shale formations.展开更多
基金Supported by the China National Science and Technology Major Project(2017ZX05037-004).
文摘Shale gas wells frequently suffer from liquid loading and insufficient formation pressure in the late stage of production.To address this issue,an intelligent production optimization method for low pressure and low productivity shale gas well is proposed.Based on the artificial intelligence algorithms,this method realizes automatic production and monitoring of gas well.The method can forecast the production performance of a single well by using the long short-term memory neural network and then guide gas well production accordingly,to fulfill liquid loading warning and automatic intermittent production.Combined with adjustable nozzle,the method can keep production and pressure of gas wells stable automatically,extend normal production time of shale gas wells,enhance automatic level of well sites,and reach the goal of refined production management by making production regime for each well.Field tests show that wells with production regime optimized by this method increased 15%in estimated ultimate reserve(EUR).Compared with the development mode of drainage after depletion recovery,this method is more economical and can increase and stabilize production effectively,so it has a bright application prospect.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
文摘The BZ19-6 gas field is characterized by high temperature and high pressure (HTHP), high condensate content, little difference between the formation pressure and dew point pressure, and large amount of reverse condensate liquid. During the early stage of depletion development, the production gas-oil ratio (GOR) and production capacity remain relatively stable, which is inconsistent with the conventional reverse condensate seepage law. In view of the static and dynamic conflict in development and production, indoor high-temperature and high-pressure PVT experiment was carried out to reveal the mist-like condensation phenomenon of fluids in the BZ19-6 formation. And the seepage characteristics of condensate gas reservoirs with various degrees of depletion under the condition of HTHP were analyzed based on production performance. The change rule of fluid phase state was analyzed in response to the characterization difficulties of the seepage mechanism. The fluid state was described using the miscible mechanism. And the interphase permeability interpolation coefficient was introduced based on interfacial tension. By doing so, the accurate characterization of the “single-phase flow of condensate gas-near-miscible mist-like quasi single-phase flow-oil-gas two-phase flow” during the development process was achieved. Then the accurate fitting of key indicators for oilfield development was completed, and the distribution law of formation pressure and the law of condensate oil precipitation under different reservoir conditions are obtained. Based on research results, the regulation strategy of variable flow rate production was developed. Currently, the work system has been optimized for 11 wells, achieving a “zero increase” in the GOS of the gas field and an annual oil increase of 22,000 cubic meters.
文摘Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.
基金part of a key project carried out in 2009–2010financially supported by the National Key Sci-Tech Major Special Item (Grant No. 2009ZX05038)
文摘A method is proposed to predict the flowing bottomhole pressures (FBHPs) for two-phase coalbed methane (CBM) wells. The mathematical models for both gas column pressure and two-phase fluid column pressure were developed based on the well liquid flow equation. FBHPs during the production were predicted by considering the effect of entrained liquid on gravitational gradients. Comparison of calculated BHPs by Cullender-Smith and proposed method was also studied. The results show that the proposed algorithm gives the desired accuracy of calculating BHPs in the low- productivity and low-pressure CBM wells. FBHP is resulted from the combined action of wellhead pressure, gas column pressure and fluid column pressure. Variation of kinetic energy term, compressibility and friction factors with depth increments and liquid holdup with velocity should be considered to simulate the real BHPs adequately. BHP is a function of depth of each column segment. The small errors of less than 1.5% between the calculated and measured values are obtained with each segment within 25 m. Adjusting BHPs can effectively increase production pressure drop, which is beneficial to CBM desorption and enhances reservoir productivity. The increment of pressure drop from 5.37 MPa2 to 8.66 MPa2 leads to an increase of CBM production from 3270 m3/d to 6700 m3/d and is attributed to a decrease in BHP from 2.25 MPa to 1.33 MPa.
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
文摘Generally the irreducible water saturation of low permeability gas reservoir is quite high which leads to the permeability stress sensibility and threshold pressure gradient. Under the assumption that permeability varies with experimental law of the pseudo pressure drop, according to concepts of perturbable ellipses and equivalent developing regulations, the calculation method of stable production of hydraulically fractured gas well in low permeability reservoirs is investigated with threshold pressure. And productivity curve is drawn and analyzed. The result shows that, permeability modulus and threshold pressure have effect on production of fractured gas well. The higher the permeability modulus and the threshold pressure, the lower the production is. Therefore, the impact of stress sensitive and threshold pressure must he considered when analyzing the productivity of vertical fracture well in low permeability gas reservoir.
文摘NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation.
基金Supported by the Basic Science Center Project of National Natural Science Foundation of China(72088101)National Natural Science Funded Project(52074345)CNPC Scientific Research and Technology Development Project(2020D-5001-21)。
文摘This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.
文摘Irradiated low-enriched uranium as target plates is used to produce,via neutron radiation and from the molybdenum-99 fission product,technetium-99m,which is a radio-element widely used for diagnosis in the field of nuclear medicine.The behavior of this type of target must be known to prevent eventual failures during radiation.The present study aims to assess,via prediction,the thermal–mechanical behavior,physical integrity,and geometric stability of targets under neutron radiation in a nuclear reactor.For this purpose,a numerical simulation using a three-dimensional finite element analysis model was performed to determine the thermal expansion and stress distribution in the target cladding.The neutronic calculation results,target material properties,and cooling parameters of the KAERI research group were used as inputs in our developed model.Thermally induced stress and deflection on the target were calculated using Ansys-Fluent codes,and the temperature profiles,as inputs of this calculation,were obtained from a CFD thermal–hydraulic model.The stress generated,induced by the pressure of fission gas release at the interface of the cladding target,was also estimated using the Redlich–Kwong equation of state.The results obtained using the bonded and unbonded target models considering the effect of the radiation heat combined with a fission gas release rate of approximately 3%show that the predicted thermal stress and deflection values satisfy the structural performance requirement and safety design.It can be presumed that the integrity of the target cladding is maintained under these conditions.
基金the Shenzhen National Science Fund for Distinguished Young Scholars(No.RCJC20210706091948015)National Science Fund for Distinguished Young Scholars(No.52225403)the National Natural Science Foundation of China(No.51827901).
文摘To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyses and numerical simulation.The designed pressure coring system can obtain cores with length of 3 m and diameter of 50 mm at 70 MPa.The results of the ball-drop operation experiment demonstrate that differential motion assembly can effectively cut a safety pin by applying a tensile force of 4852 N,and it can lift the core tube through the center pole to complete a series of mechanical actions to seal the pressure.Additionally,by maintaining pressures at 70 MPa for 30 min,the pressure sealing capacity of the system was proven.Furthermore,a core sample with a diameter of 50 mm was obtained through a core drilling experiment and the coring performance of the pressure coring system was verified.This study can not only enrich the existing onshore coring technology but also provide a theoretical guide and design criteria for the development of similar pressure coring systems to meet the demand for deeper underground exploration.
基金supported by the National Natural Science Foundation of China(Grant No.1217020361).
文摘Various mechanisms are employed to interpret the low water recovery during the shale-gas production period,such as extra-trapped water in the fracture network,water imbibition due to osmotic pressure and capillary pressure.These lead to the difficulty of water flow,which could be described by lowvelocity non-Darcy's law known as threshold pressure gradient(TPG).In this paper we firstly employ the low-velocity non-Darcy's law to describe the water flow and use Darcy flow accounting for slip flow and free molecular flow mechanisms to model gas flow in the shale formation.The sensitive study using numerical simulation shows that the proposed flow model could model the low fracturing liquid recovery and that large pseudo TPG leads to lower fracturing liquid recovery.Thus,the proposed model would give new insight to model the low water recovery in shale formations.