Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic...Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices.展开更多
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ...High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.展开更多
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit...CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.展开更多
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r...In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.展开更多
High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time o...High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time on the surface morphology, crystalline quality and electrical properties of the InSb epilayer is systematically investigated using Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction, Hall measurement and contactless sheet resistance measurement. It is found that a 2-μm-thick InSb epilayer grown at 450℃ with a Ⅴ/Ⅲ ratio of 5 and an indium pre-deposition time of 2.5s exhibits the optimum material quality, with a root-meansquare surface roughness of only 1.2 nm, an XRD rocking curve with full width at half maximum of 358 arcsec and a room-temperature electron mobility of 4.6 × 10~4 cm^2/V·s. These values are comparable with those grown by molecular beam epitaxy. Hall sensors are fabricated utilizing a 600-nm-thick InSb epilayer. The output Hall voltages of these sensors exceed 10 mV with the input voltage of 1 V at 9.3 mT and the electron mobility of 3.2 × 10~4 cm^2/V·s is determined, which indicates a strong potential for Hall applications.展开更多
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re...We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress.展开更多
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy...Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.展开更多
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the...We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.展开更多
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r...The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN.展开更多
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct...Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.展开更多
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is...Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.展开更多
Copper nanorods have been synthe-sized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD) employing copper (II) acetylacetonate, Cu(acac)2, and hydrogen as a precursor and reacta...Copper nanorods have been synthe-sized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD) employing copper (II) acetylacetonate, Cu(acac)2, and hydrogen as a precursor and reactant gas, re- spectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties. In addition, it has been found that chemically modi- fying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external sur- face are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vac-uum (2 kPa) which is extremely milder than the con- ventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure.展开更多
GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temper...GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.展开更多
N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Com...N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Compositional and structural analyzes of the films were performed by using Rutherford backscattering spectroscopy and X-ray diffraction.The frictional behavior of the thin films and 304L stainless steel substrate was evaluated using a ball-on-flat configuration with reciprocating sliding under marginally lubricated and fully flooded conditions.Al alloy (2017) was used as ball counterface,while basestock synthetic polyalfaolefin oil (PAO10) without additives was used as lubricant.The flat and ball counterface surfaces were examined to assess the wear dimension and failure mechanism.Under marginally lubricated condition,N-doped ZnO thin films provided significant reduction in friction,whereas the films have minimal or no effect in friction under fully flooded condition.N-doped ZnO thin films showed a significant effect in protecting the ball counterface as wear volume was reduced compared with that of the substrate under the marginally lubricated condition.Under the fully flooded condition,with the exception of one of the films,the wear volume of the N-doped ZnO thin films ball reduced compared with that of the substrate.In all the ball counterfaces for N-doped ZnO thin films under both conditions,wear occurred through abrasive mechanism of various degrees or mild polishing.Thus,superfluous lubrication of N-doped ZnO thin films is not necessary to reduce friction and wear.展开更多
As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin...As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.展开更多
The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morp...The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morphology. With the misorientation angles increasing from 0.5° to 2.0° toward the a-plane of the sapphire substrate, the number of the hillock becomes less and less and finally the surface becomes flat one on the sapphire substrate with the misorientation angle of 2°. It is also found that the crystalline quality and the strain in the Ga N are greatly influenced by the misorientation angle.展开更多
3C-SiC heteroepitaxial layers were grown on Si substrates using a horizontal,hot-wall low pressure chemical vapor deposition system.The crystal quality,surface morphology and thickness uniformity of the layers were ch...3C-SiC heteroepitaxial layers were grown on Si substrates using a horizontal,hot-wall low pressure chemical vapor deposition system.The crystal quality,surface morphology and thickness uniformity of the layers were characterized by X-ray diffraction,atomic force microcopy and Fourier transform infrared spectroscopy,respectively.Growth of the epitaxial layer was determined to follow a three-dimensional island mode initially and then switch to a step-flow mode as the growth time increases.展开更多
ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron mi...ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.展开更多
The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conductio...The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the A1 atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-A1N, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure.展开更多
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ...This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61076010)the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun,China(Grant No.12ZX68)
文摘Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices.
文摘High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated.
基金Supported by the Key Program of the National Natural Science Foundation of China under Grant No 61334009the National High Technology Research and Development Program of China under Grant No 2014AA032604
文摘CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant No.2011CB301903)+5 种基金the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20110171110021)the International Science and Technology Collaboration Program of China(Grant No.2012DFG52260)the International Science and Technology Collaboration Program of Guangdong Province,China(Grant No.2013B051000041)the Science and Technology Plan of Guangdong Province,China(Grant No.2013B010401013)the National High Technology Research and Development Program of China(Grant No.2014AA032606)the Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China(Grant No.IOSKL2014KF17)
文摘In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe CAS Interdisciplinary Innovation Team+1 种基金the National Natural Science Foundation of China under Grant Nos 61874179,61804161 and 61605236the Key Frontier Scientific Research Program of Chinese Academy of Sciences under Grant No QYZDB-SSW-JSC014
文摘High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time on the surface morphology, crystalline quality and electrical properties of the InSb epilayer is systematically investigated using Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction, Hall measurement and contactless sheet resistance measurement. It is found that a 2-μm-thick InSb epilayer grown at 450℃ with a Ⅴ/Ⅲ ratio of 5 and an indium pre-deposition time of 2.5s exhibits the optimum material quality, with a root-meansquare surface roughness of only 1.2 nm, an XRD rocking curve with full width at half maximum of 358 arcsec and a room-temperature electron mobility of 4.6 × 10~4 cm^2/V·s. These values are comparable with those grown by molecular beam epitaxy. Hall sensors are fabricated utilizing a 600-nm-thick InSb epilayer. The output Hall voltages of these sensors exceed 10 mV with the input voltage of 1 V at 9.3 mT and the electron mobility of 3.2 × 10~4 cm^2/V·s is determined, which indicates a strong potential for Hall applications.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)Guangdong Provincial Scientific and Technologic Planning Program,China(Grant No.2014B010119002)
文摘We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.61306017,61334002,61474086,and 11435010)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61306017)
文摘Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices.
文摘We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61204006 and 61574108the Fundamental Research Funds for the Central Universities under Grant No JB141101the Foundation of Key Laboratory of Nanodevices and Applications of Suzhou Institute of Nano-Tech and Nano-Bionics of Chinese Academy of Sciences under Grant No 15CS01
文摘The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN.
基金Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002the National Natural Sciences Foundation of China under Grant Nos 61574108,61334002,61474086 and 61306017
文摘Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204008,11075176,and 60976090)the National Key Basic Research Special Foundation of China(Grant No.2013CB328705)
文摘Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.
文摘Copper nanorods have been synthe-sized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD) employing copper (II) acetylacetonate, Cu(acac)2, and hydrogen as a precursor and reactant gas, re- spectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties. In addition, it has been found that chemically modi- fying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external sur- face are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vac-uum (2 kPa) which is extremely milder than the con- ventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure.
基金Supported by the National Natural Science Foundation of China(No.61076010) and the Program of the State Key Laboratory on Integrated Optoelectronics, China(No. IOSKL2012ZZ13).
文摘GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.
文摘N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Compositional and structural analyzes of the films were performed by using Rutherford backscattering spectroscopy and X-ray diffraction.The frictional behavior of the thin films and 304L stainless steel substrate was evaluated using a ball-on-flat configuration with reciprocating sliding under marginally lubricated and fully flooded conditions.Al alloy (2017) was used as ball counterface,while basestock synthetic polyalfaolefin oil (PAO10) without additives was used as lubricant.The flat and ball counterface surfaces were examined to assess the wear dimension and failure mechanism.Under marginally lubricated condition,N-doped ZnO thin films provided significant reduction in friction,whereas the films have minimal or no effect in friction under fully flooded condition.N-doped ZnO thin films showed a significant effect in protecting the ball counterface as wear volume was reduced compared with that of the substrate under the marginally lubricated condition.Under the fully flooded condition,with the exception of one of the films,the wear volume of the N-doped ZnO thin films ball reduced compared with that of the substrate.In all the ball counterfaces for N-doped ZnO thin films under both conditions,wear occurred through abrasive mechanism of various degrees or mild polishing.Thus,superfluous lubrication of N-doped ZnO thin films is not necessary to reduce friction and wear.
基金supported by the National Natural Science Foundation of China (Grant No. 60706014)the National Science Fund for Distinguished Young Scholars (Grant No. 60625302)+2 种基金the National Natural Science Foundation of China (General Program) (Grant No. 2009CB320603)the National High-Tech Research and Development Program of China (Grant No. 2009AA04Z159)the Shanghai Leading Academic Discipline Project (Grant No. B504)
文摘As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth.
基金financially supported by the National Basic Research Program of China (Nos. 2012CB619303 and 2012CB619304)the National Natural Science Foundation of China (Nos. 11023003, 10990102, 11174008 and 61076012)the National High Technology Research & Development Project of China (No. 2011AA03A103)
文摘The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morphology. With the misorientation angles increasing from 0.5° to 2.0° toward the a-plane of the sapphire substrate, the number of the hillock becomes less and less and finally the surface becomes flat one on the sapphire substrate with the misorientation angle of 2°. It is also found that the crystalline quality and the strain in the Ga N are greatly influenced by the misorientation angle.
基金supported by the National Natural Science Foundation of China(60876061)the Pre-research Project(51308040302)
文摘3C-SiC heteroepitaxial layers were grown on Si substrates using a horizontal,hot-wall low pressure chemical vapor deposition system.The crystal quality,surface morphology and thickness uniformity of the layers were characterized by X-ray diffraction,atomic force microcopy and Fourier transform infrared spectroscopy,respectively.Growth of the epitaxial layer was determined to follow a three-dimensional island mode initially and then switch to a step-flow mode as the growth time increases.
基金financially supported by the National Natural Science Foundation of China (Nos. 11175038 and 51102036)the Fundamental Research Funds for the Central Universities (No. DC110314)
文摘ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.
基金supported by the National Basic Research Program of China(Grant No.2010CB923200)the National "863" Project of China(GrantNo.2011AA03A101)+2 种基金the Foundation of the Key Technologies R&D Program of Guangdong Province,China(Grant No.2007A010500011)the International Science and Technology Cooperation Program of China(Grant No.2012DFG52260)the National Science Foundation of China-Guangdong Province Jointed Foundation(Grant No.U0834001)
文摘The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the A1 atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-A1N, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure.
基金the Fundamental Research Funds for the National Key Research and Development Project of China(Grant No.2020YFB1807403)the National Natural Science Foundation of China(Grant Nos.62174125 and 62131014)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.QTZX22022 and YJS2213)the Innovation Fund of Xidian University.
文摘This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization.