期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal–organic chemical vapor deposition
1
作者 王连锴 刘仁俊 +4 位作者 吕游 杨皓宇 李国兴 张源涛 张宝林 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期114-118,共5页
Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and mic... Orthogonal experiments of Ga Sb films growth on Ga As(001) substrates have been designed and performed by using a low-pressure metal–organic chemical vapor deposition(LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized Ga Sb thin film has a narrow full width at half maximum(358 arc sec) of the(004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of Ga Sb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline Ga Sb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. 展开更多
关键词 crystal growth metalorganic chemical vapor deposition thin films
下载PDF
Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition 被引量:1
2
作者 黎明 王勇 +1 位作者 王凯明 刘纪美 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期597-601,共5页
High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium ... High-performance low-leakage-current A1GaN/GaN high electron mobility transistors (HEMTs) on silicon (111) sub- strates grown by metal organic chemical vapor deposition (MOCVD) with a novel partially Magnesium (Mg)-doped GaN buffer scheme have been fabricated successfully. The growth and DC results were compared between Mg-doped GaN buffer layer and a unintentionally onμe. A 1μ m gate-length transistor with Mg-doped buffer layer exhibited an OFF-state drain leakage current of 8.3 × 10-8 A/mm, to our best knowledge, which is the lowest value reported for MOCVD-grown A1GaN/GaN HEMTs on Si featuring the same dimension and structure. The RF characteristics of 0.25-μ m gate length T-shaped gate HEMTs were also investigated. 展开更多
关键词 AlGaN/GaN HEMTs low-leakage current metal organic chemical vapor deposition Mg-dopedbuffer layer
下载PDF
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition 被引量:1
3
作者 任鹏 韩刚 +6 位作者 付丙磊 薛斌 张宁 刘喆 赵丽霞 王军喜 李晋闽 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期145-149,共5页
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit... CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature. 展开更多
关键词 of or IS as RATE GAN Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with metal organic chemical vapor deposition by with
下载PDF
In-situ wafer bowing measurements of GaN grown on Si(111) substrate by reflectivity mapping in metal organic chemical vapor deposition system 被引量:1
4
作者 杨亿斌 柳铭岗 +12 位作者 陈伟杰 韩小标 陈杰 林秀其 林佳利 罗慧 廖强 臧文杰 陈崟松 邱运灵 吴志盛 刘扬 张佰君 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期362-366,共5页
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The r... In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2 Thomas Swan close coupled showerhead metal organic chemical vapor deposition(MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses(tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, Ga N grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded Al Ga N buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. 展开更多
关键词 stresses metal organic chemical vapor deposition wafer bowing in-situ reflectivity mapping
下载PDF
High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application
5
作者 Xin Li Yu Zhao +6 位作者 Min Xiong Qi-Hua Wu Yan Teng Xiu-Jun Hao Yong Huang Shuang-Yuan Hu Xin Zhu 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第1期52-55,共4页
High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time o... High-quality InSb epilayers are grown on semi-insulting GaAs substrates by metalorganic chemical vapor deposition using an indium pre-deposition technique. The influence of Ⅴ/Ⅲ ratio and indium pre-deposition time on the surface morphology, crystalline quality and electrical properties of the InSb epilayer is systematically investigated using Nomarski microscopy, atomic force microscopy, high-resolution x-ray diffraction, Hall measurement and contactless sheet resistance measurement. It is found that a 2-μm-thick InSb epilayer grown at 450℃ with a Ⅴ/Ⅲ ratio of 5 and an indium pre-deposition time of 2.5s exhibits the optimum material quality, with a root-meansquare surface roughness of only 1.2 nm, an XRD rocking curve with full width at half maximum of 358 arcsec and a room-temperature electron mobility of 4.6 × 10~4 cm^2/V·s. These values are comparable with those grown by molecular beam epitaxy. Hall sensors are fabricated utilizing a 600-nm-thick InSb epilayer. The output Hall voltages of these sensors exceed 10 mV with the input voltage of 1 V at 9.3 mT and the electron mobility of 3.2 × 10~4 cm^2/V·s is determined, which indicates a strong potential for Hall applications. 展开更多
关键词 HALL Sensor APPLICATION metal organic chemical vapor deposition GALLIUM ARSENIDE
下载PDF
Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
6
作者 吉泽生 汪连山 +5 位作者 赵桂娟 孟钰淋 李方政 李辉杰 杨少延 王占国 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期420-425,共6页
We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the re... We report the growth of Al N epilayers on c-plane sapphire substrates by pulsed metal organic chemical vapor deposition(MOCVD). The sources of trimethylaluminium(TMAl) and ammonia were pulse introduced into the reactor to avoid the occurrence of the parasitic reaction. Through adjusting the duty cycle ratio of TMAl to ammonia from 0.8 to 3.0, the growth rate of Al N epilayers could be controlled in the range of 0.24 m/h to 0.93 m/h. The high-resolution x-ray diffraction(HRXRD) measurement showed that the full width at half maximum(FWHM) of the(0002) and(10-12) reflections for a sample would be 194 arcsec and 421 arcsec, respectively. The step-flow growth mode was observed in the sample with the atomic level flat surface steps, in which a root-mean-square(RMS) roughness was lower to 0.2 nm as tested by atomic force microscope(AFM). The growth process of Al N epilayers was discussed in terms of crystalline quality, surface morphology,and residual stress. 展开更多
关键词 pulsed metal organic chemical vapor deposition growth mode MORPHOLOGY crystalline quality
下载PDF
Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition
7
作者 张雅超 周小伟 +6 位作者 许晟瑞 陈大正 王之哲 汪星 张金风 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期796-801,共6页
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy... Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 x 10^13 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cruZ/V-s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. 展开更多
关键词 HETEROSTRUCTURE InGaN channel pulsed metal organic chemical vapor deposition
下载PDF
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
8
作者 张杨 王青 +5 位作者 张小宾 刘振奇 陈丙振 黄珊珊 彭娜 王智勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期167-171,共5页
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the... We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum. 展开更多
关键词 by on it of GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by metal organic chemical vapor deposition with High Efficiency is THAN Ge GaAs with cell that
下载PDF
Improved Semipolar(11(2|-)2) GaN Quality Grown on m-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN_x Interlayer
9
作者 许晟瑞 赵颖 +3 位作者 姜腾 张进成 李培咸 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期150-152,共3页
The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-r... The effect of a self-organized SiNs interlayer on the defect density of (1122) semipolar GaN grown on 7n-plane sapphire is studied by transmission electron microscopy, atomic force microscopy and high resolution x-ray diffrac- tion. The SiNx interlayer reduces the c-type dislocation density from 2.5 ×10^10 cm^-2 to 5 ×10^8 cm 2. The SiNx interlayer produces regions that are free from basal plane stacking faults (BSFs) and dislocations. The overall BSF density is reduced from 2.1×10^5 cm-1 to 1.3×10^4 cm^-1. The large dislocations and BSF reduction in semipolar (1122) GaN with the SiNx, interlayer result from two primary mechanisms. The first mechanism is the direct dislocation blocking by the SiNx interlayer, and the second mechanism is associated with the unique structure character of (1122) semipolar GaN. 展开更多
关键词 GaN Quality Grown on m-Plane Sapphire Substrates by metal organic chemical vapor deposition Using Self-Organized SiN_x Interlaye in of is by Improved Semipolar on
下载PDF
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
10
作者 全汝岱 张进成 +3 位作者 张雅超 张苇航 任泽阳 郝跃 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期145-148,共4页
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct... Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively. 展开更多
关键词 GAN IS in of Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed metal organic chemical vapor deposition by on
下载PDF
Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal–organic chemical vapor deposition
11
作者 邢海英 徐章程 +2 位作者 崔明启 谢玉芯 张国义 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期538-540,共3页
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is... Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results. 展开更多
关键词 GAMNN PHOTOLUMINESCENCE MAGNETISM metal-organic chemical vapor deposition
下载PDF
Fabrication of copper nanorods by low-temperature metal organic chemical vapor deposition 被引量:3
12
作者 ZHANG Ying Frank Leung-Yuk Lam +1 位作者 HU Xijun YAN Zifeng 《Chinese Science Bulletin》 SCIE EI CAS 2006年第21期2662-2668,共7页
Copper nanorods have been synthe-sized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD) employing copper (II) acetylacetonate, Cu(acac)2, and hydrogen as a precursor and reacta... Copper nanorods have been synthe-sized in mesoporous SBA-15 by a low-temperature metal organic chemical vapor deposition (MOCVD) employing copper (II) acetylacetonate, Cu(acac)2, and hydrogen as a precursor and reactant gas, re- spectively. The hydrogen plays an important role in chemical reduction of oganometallic precursor which enhances mass transfer in the interior of the SBA-15 porous substrate. Such copper nanostructures are of great potentials in the semiconductor due to their unusual optical, magnetic and electronic properties. In addition, it has been found that chemically modi- fying the substrate surface by carbon deposition is crucial to such synthesis of copper nanostructures in the interior of the SBA-15, which is able to change the surface properties of SBA-15 from hydrophilic to hydrophobic to promote the adsorption of organic cupric precursor. It has also been found that the copper nanoparticles deposited on the external sur- face are almost eliminated and the copper nanorods are more distinct while the product was treated with ammonia. This approach could be achieved under a mild condition: a low temperature (400℃) and vac-uum (2 kPa) which is extremely milder than the con- ventional method. It actually sounds as a foundation which is the first time to synthesize a copper nanorod at a mild condition of a low reaction temperature and pressure. 展开更多
关键词 化学蒸气沉积法 有机金属分解 低温 MOCVD
原文传递
Metal-organic Chemical Vapor Deposition of GaSb/GaAs Quantum Dots: the Dependence of the Morphology on Growth Temperature and Vapour V/Ⅲ Ratio 被引量:2
13
作者 YANG Haoyu LIU Renjun LU You WANG Liankai LI Tiantian LI Guoxing ZHANG Yuantao ZHANG Baolin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2014年第1期13-17,共5页
GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temper... GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio. 展开更多
关键词 GaSb quantum dot Surface morphology metal-organic chemical vapor deposition Atomic force microscope
原文传递
Tribological behavior of N-doped ZnO thin films by metal organic chemical vapor deposition under lubricated contacts 被引量:1
14
作者 Bolutife OLOFINJANA Uchenna Sydney MBAMARA +3 位作者 Oyelayo AJAYI Cinta LORENZO-MARTIN Eusebius Ikechukwu OBIAJUUWA Ezekiel Oladele Bolarinwa AJAYI 《Friction》 CSCD 2017年第4期402-413,共12页
N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Com... N-doped ZnO thin films were deposited on 304L stainless steel through the pyrolysis of zinc acetate and ammonium acetate in different ratios at a temperature of 420 ℃ using metal organic chemical vapor deposition.Compositional and structural analyzes of the films were performed by using Rutherford backscattering spectroscopy and X-ray diffraction.The frictional behavior of the thin films and 304L stainless steel substrate was evaluated using a ball-on-flat configuration with reciprocating sliding under marginally lubricated and fully flooded conditions.Al alloy (2017) was used as ball counterface,while basestock synthetic polyalfaolefin oil (PAO10) without additives was used as lubricant.The flat and ball counterface surfaces were examined to assess the wear dimension and failure mechanism.Under marginally lubricated condition,N-doped ZnO thin films provided significant reduction in friction,whereas the films have minimal or no effect in friction under fully flooded condition.N-doped ZnO thin films showed a significant effect in protecting the ball counterface as wear volume was reduced compared with that of the substrate under the marginally lubricated condition.Under the fully flooded condition,with the exception of one of the films,the wear volume of the N-doped ZnO thin films ball reduced compared with that of the substrate.In all the ball counterfaces for N-doped ZnO thin films under both conditions,wear occurred through abrasive mechanism of various degrees or mild polishing.Thus,superfluous lubrication of N-doped ZnO thin films is not necessary to reduce friction and wear. 展开更多
关键词 ZnO film metal organic chemical vapor deposition FRICTION WEAR optical microscopy
原文传递
The multiscale simulation of metal organic chemical vapor deposition growth dynamics of GaInP thin film
15
作者 HU GuiHua YU Tao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第8期1481-1490,共10页
As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin... As a Group III–V compound, GaInP is a high-efficiency luminous material. Metal organic chemical vapor deposition (MOCVD) technology is a very efficient way to uniformly grow multi-chip, multilayer and large-area thin film. By combining the computational fluid dynamics (CFD) and the kinetic Monte Carlo (KMC) methods with virtual reality (VR) technology, this paper presents a multiscale simulation of fluid dynamics, thermodynamics, and molecular dynamics to study the growth process of GaInP thin film in a vertical MOCVD reactor. The results of visualization truly and intuitively not only display the distributional properties of the gas’ thermal and flow fields in a MOCVD reactor but also display the process of GaInP thin film growth in a MOCVD reactor. The simulation thus provides us with a fundamental guideline for optimizing GaInP MOCVD growth. 展开更多
关键词 metal organic chemical vapor deposition computational fluid dynamics kinetic Monte Carlo virtual reality multiscale simulation GaInP thin film growth
原文传递
Growth of N-polar GaN on vicinal sapphire substrate by metal organic chemical vapor deposition
16
作者 Can-Tao Zhong Guo-Yi Zhang 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期709-713,共5页
The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morp... The growth and properties of N-polar Ga N layers by metal organic chemical vapor deposition(MOCVD) were reported. It is found that N-polar Ga N grown on normal sapphire substrate shows hexagonal hillock surface morphology. With the misorientation angles increasing from 0.5° to 2.0° toward the a-plane of the sapphire substrate, the number of the hillock becomes less and less and finally the surface becomes flat one on the sapphire substrate with the misorientation angle of 2°. It is also found that the crystalline quality and the strain in the Ga N are greatly influenced by the misorientation angle. 展开更多
关键词 GAN N-polarity metal organic chemical vapor deposition
原文传递
Characterization of the heteroepitaxial growth of 3C-SiC on Si during low pressure chemical vapor deposition
17
作者 CHEN Da ZHANG YuMing ZHANG YiMen WANG YueHu JIA RenXu 《Chinese Science Bulletin》 SCIE EI CAS 2010年第27期3102-3106,共5页
3C-SiC heteroepitaxial layers were grown on Si substrates using a horizontal,hot-wall low pressure chemical vapor deposition system.The crystal quality,surface morphology and thickness uniformity of the layers were ch... 3C-SiC heteroepitaxial layers were grown on Si substrates using a horizontal,hot-wall low pressure chemical vapor deposition system.The crystal quality,surface morphology and thickness uniformity of the layers were characterized by X-ray diffraction,atomic force microcopy and Fourier transform infrared spectroscopy,respectively.Growth of the epitaxial layer was determined to follow a three-dimensional island mode initially and then switch to a step-flow mode as the growth time increases. 展开更多
关键词 低压化学气相沉积 SIC 生长特性 3C 傅里叶变换红外光谱 化学气相沉积系统 外延层生长 原子力显微镜
原文传递
Structure and Electrical Characteristics of Zinc Oxide Thin Films Grown on Si (111) by Metal-organic Chemical Vapor Deposition
18
作者 Yunfeng Wu Dongping Liu +3 位作者 Naisen Yu Yuanda Liu Hongwei Liang Guotong Du 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第9期830-834,共5页
ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron mi... ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes. 展开更多
关键词 ZnO thin films metal-organic chemical vapor deposition Conductive atomic force microscopy Scanning electron microscopy
原文传递
Electrical properties of MOCVD-grown GaN on Si (111) substrates with low-temperature AlN interlayers 被引量:1
19
作者 倪毅强 贺致远 +5 位作者 钟健 姚尧 杨帆 向鹏 张佰君 刘扬 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期690-693,共4页
The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conductio... The electrical properties of the structure of GaN grown on an Si (111) substrate with low-temperature (LT) A1N interlayers by metal-organic chemical-vapour deposition are investigated. An abnormal P-type conduction is observed in our GaN-on-Si structure by Hall effect measurement, which is mainly due to the A1 atom diffusing into the Si substrate and acting as an acceptor dopant. Meanwhile, a constant n-type conduction channel is observed in LT-A1N, which causes a conduction-type conversion at low temperature (50 K) and may further influence the electrical behavior of this structure. 展开更多
关键词 metal-organic chemical-vapour deposition GaN-on-Si electrical behavior low-temperature A1Ninterlayers
下载PDF
Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
20
作者 郭静姝 祝杰杰 +9 位作者 刘思雨 刘捷龙 徐佳豪 陈伟伟 周雨威 赵旭 宓珉瀚 杨眉 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期467-471,共5页
This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting ... This paper studied the low-resistance ohmic contacts on InAlN/GaN with metal–organic chemical vapor deposition(MOCVD)regrowth technique.The 150-nm regrown n-InGaN exhibits a low sheet resistance of 31Ω/□,resulting in an extremely low contact resistance of 0.102Ω·mm between n^(+)-InGaN and InAlN/GaN channels.Mask-free regrowth process was also used to significantly improve the sheet resistance of InAlN/GaN with MOCVD regrown ohmic contacts.Then,the diffusion mechanism between n^(+)-InGaN and InAlN during regrowth process was investigated with electrical and structural characterizations,which could benefit the further process optimization. 展开更多
关键词 InAlN/GaN low-resistance ohmic contacts metalorganic chemical vapor deposition(MOCVD) n^(+)-InGaN time of flight secondary ion mass spectrometry(TOF-SIMS)
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部