Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation si...Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.展开更多
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr...To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.展开更多
The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the dist...The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.展开更多
Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of eco...Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of economic forming process, hydroforming is the manufacturing option which uses a fluid medium to form a component by using high internal pressure. This process gained steep interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole projected part at the same time. Low pressure tube hydroforming considered an inexpensive option for forming these advanced high strength steel. This paper investigates the pressurization system used during the low pressure tube hydroforming cycle. It is observed that the usage of ramp pressure cycle during forming the part from low pressure tube hydroforming results in lesser die holding force. Also, the stress, strain and thickness distribution of the part during low pressure tube hydroforming are critically analysed.展开更多
The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repea...The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.展开更多
Flow fields induced by a surface dielectric barrier discharge actuator at low pressure of 7 kPa are measured by particle image velocimetry. The distribution of local vortices in the flow field is revealed by the Q cri...Flow fields induced by a surface dielectric barrier discharge actuator at low pressure of 7 kPa are measured by particle image velocimetry. The distribution of local vortices in the flow field is revealed by the Q criterion. The reason for the generation of vortices is analyzed and the influence of pulse frequency and duty cycle on vortices is studied. The results show that the Q criterion can reveal the small-scale vortices, which cannot be indicated by the streamline. The direction transition zone where the induced jet moves from the vertical to the tangential and the shear layer between the jet and stationary air are prone to the generation of strong vortices. The influence of pulse frequency on vortices is not obvious, but the variation of duty cycle can significantly affect the strength and distribution of vortices.展开更多
The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get...The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films.展开更多
The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the...The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules.展开更多
A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using ...A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
Objective: To investigate the effects of low central venous pressure (LVCP) on blood loss and evaluate its influence on renal function in patients undergoing hepatectomy. Methods: Forty-six patients, ASA classific...Objective: To investigate the effects of low central venous pressure (LVCP) on blood loss and evaluate its influence on renal function in patients undergoing hepatectomy. Methods: Forty-six patients, ASA classification Ⅰ-Ⅲ, undergoing liver resection were randomized into LCVP group (n = 23) and control group (n = 23). In LCVP group, CVP was maintained at 2-4 mmHg and MBP above 60 mmHg during hepatectomy, while in control group hepatectomy was performed routinely without lowering CVP. Volume of blood loss during hepatectomy, volume of blood transfusion, and changes of renal functions were compared between the two groups. Results: There were no significant differences in demographics, ASA score, type of hepatectomy, duration of inflow occlusion, operation time, weight of resected liver tissues, and renal functions between the two groups. LCVP group had a significantly lower volume of total intraoperative blood loss (P 〈 0.01) and RBC transfusion (P 〈 0.05). Conclusion: Lowering the CVP to less than 5 mmHg is a simple and effective technique to reduce blood loss and blood infusion during liver resection, and has no detrimental effects on renal functions.展开更多
A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium allo...A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium alloy parts with low input cost. This machine with such a system has the virtue of economical and compact, and combines the Fuzzy-PID technology and achieves accuracies of ±2.5 mbar. At present, this machine has been adopted by several users in China for the production of aluminum alloy castings with high property requirements. Furthermore, for magnesium alloy castings, this machine can be used with the gas protect unit.展开更多
The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stabi...The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stability of the copper oxides. The two PM alloys oxidized very slowly and formed only external Cr 2O 3 scales rather than undergoing an internal oxidation of chromium. This result is attributed mainly to a supply of chromium from the small Cr rich particles dispersed within the Cu rich phase. The oxidation kinetics of the two PM Cu Cr alloys approximately followed the parabolic rate law. The scaling rates are of the same order as those measured for pure chromium under the same oxygen pressure, but smaller than those for the alloys of similar composition prepared by normal arc melting techniques, whose compositions were largely non uniform. The results are interpreted in terms of the two phase nature of these alloys.展开更多
In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed...In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.展开更多
In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temper...In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of lon...The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.展开更多
The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test...The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.展开更多
Low Pressure Carburizing (LPC) was introduced in the 90’s in the western Europe Heat Treatment business, mainly for in-house applications where it was especially appreciated for Carburizing of transmission parts. How...Low Pressure Carburizing (LPC) was introduced in the 90’s in the western Europe Heat Treatment business, mainly for in-house applications where it was especially appreciated for Carburizing of transmission parts. However the success of the LPC units installed for gears Carburizing in the automotive industry has hindered the development of the process in other fields - like subcontracting business -, where its advantages deserve to be enlightened. After a brief review of the principle of the process, the interest of its classical application to transmission parts is described, underlining peculiarly the reduction of the distortion observed when LPC is associated with high pressure gas quenching. Then the less-known advantages of the LPC process, like the high accuracy and reproducibility of the results, the modeling possibility and the simulation easiness, the case-depth uniformity and the full flexibility of the units are considered, showing how they can be beneficial to subcontracting business.展开更多
基金supported by National Natural Science Foundation of China(No.41576108 and No.41605006)Natural Science Foundation project of Shandong Province(No.ZR2016DB26).
文摘Based on the principle of transient perturbation analysis,in this paper,a method to objectively determine the weather pattern formed by sea fog is provided.On the basis of the classification results,the circulation situation,divergence and vertical velocity field,and the vertical profile of temperature and humidity are synthesized and analyzed.The basic characteristics of the circulation and physical field of sea fog under low pressure control(L type sea fog)are obtained,and the results are compared with the sea fog under the control of high pressure(H type sea fog):a)L type sea fogs potential height anomaly disturbance is mainly manifested in the low layer,and its average value is-65.66 gpm,gradually weakening upward;b)L type sea fogs inversion structure is weaker than H type sea fogs when it occurs,the fog layer is thicker and the high relative humidity level is high over the fog layer,while the H type sea fogs fog layer has a relatively obvious dry layer;c)L sea fog has three layers of structure at the vertical direction.The first layer 1000-950 hPa is convergence accompanied by weak rise and subsidence,the second layer 950-850 hPa is divergence accompanied by weak subsidence,and the third layer 850 to 500hPa is gradually strengthened.While there are two layer structures of the H type sea fog.1000 hPa is divergence accompanied by weak rising and sinking movement,950-500 hPa is a uniform subsidence movement.d)Probability density statistical analysis further quantified the vertical movement of L and H type sea fog and the distribution of relative humidity in each layer.These conclusions provide an important reference for forecasting the sea fog in the northwest of the Yellow Sea under the condition of low pressure circulation in summer.
基金supported by the National Natural Science Foundation of China(No.51204124)the China Postdoctoral Science Foundation(No.2012M511610)the Scientific Research Foundation of Wuhan Institute of Technology(No.14125041)
文摘To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.
基金funded by the Innovation Fund for Outstanding Scholar of Henan Province(No.0621000700)
文摘The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
文摘Advanced high strength steels are the group of material with high strength and good formability, because high strength lesser gauge thickness can be used without compromising the function of component. In terms of economic forming process, hydroforming is the manufacturing option which uses a fluid medium to form a component by using high internal pressure. This process gained steep interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole projected part at the same time. Low pressure tube hydroforming considered an inexpensive option for forming these advanced high strength steel. This paper investigates the pressurization system used during the low pressure tube hydroforming cycle. It is observed that the usage of ramp pressure cycle during forming the part from low pressure tube hydroforming results in lesser die holding force. Also, the stress, strain and thickness distribution of the part during low pressure tube hydroforming are critically analysed.
基金Projects(51475120,U1537201) supported by the National Natural Science Foundation of China
文摘The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.
基金supported by National Natural Science Foundation of China under Contract Nos. 11205244, 51076168, 91441123 and 51222701
文摘Flow fields induced by a surface dielectric barrier discharge actuator at low pressure of 7 kPa are measured by particle image velocimetry. The distribution of local vortices in the flow field is revealed by the Q criterion. The reason for the generation of vortices is analyzed and the influence of pulse frequency and duty cycle on vortices is studied. The results show that the Q criterion can reveal the small-scale vortices, which cannot be indicated by the streamline. The direction transition zone where the induced jet moves from the vertical to the tangential and the shear layer between the jet and stationary air are prone to the generation of strong vortices. The influence of pulse frequency on vortices is not obvious, but the variation of duty cycle can significantly affect the strength and distribution of vortices.
文摘The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films.
文摘The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules.
文摘A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic characteristics of low pressure rotors connected by a spline coupling.The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement.Through simulating calculation and experiments,the effects of tightening torque on the dynamic characteristics of the rotor system connected by a spline coupling including critical speeds,vibration modes and unbalance responses are analyzed.The results show that when increasing the tightening torque,the first two critical speeds and the amplitudes of unbalance response gradually increase in varying degrees while the vibration modes are essentially unchanged.In addition,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.
文摘Objective: To investigate the effects of low central venous pressure (LVCP) on blood loss and evaluate its influence on renal function in patients undergoing hepatectomy. Methods: Forty-six patients, ASA classification Ⅰ-Ⅲ, undergoing liver resection were randomized into LCVP group (n = 23) and control group (n = 23). In LCVP group, CVP was maintained at 2-4 mmHg and MBP above 60 mmHg during hepatectomy, while in control group hepatectomy was performed routinely without lowering CVP. Volume of blood loss during hepatectomy, volume of blood transfusion, and changes of renal functions were compared between the two groups. Results: There were no significant differences in demographics, ASA score, type of hepatectomy, duration of inflow occlusion, operation time, weight of resected liver tissues, and renal functions between the two groups. LCVP group had a significantly lower volume of total intraoperative blood loss (P 〈 0.01) and RBC transfusion (P 〈 0.05). Conclusion: Lowering the CVP to less than 5 mmHg is a simple and effective technique to reduce blood loss and blood infusion during liver resection, and has no detrimental effects on renal functions.
基金financially supported by the National Natural Science Foundation of China, Project No. 51074210
文摘A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium alloy parts with low input cost. This machine with such a system has the virtue of economical and compact, and combines the Fuzzy-PID technology and achieves accuracies of ±2.5 mbar. At present, this machine has been adopted by several users in China for the production of aluminum alloy castings with high property requirements. Furthermore, for magnesium alloy castings, this machine can be used with the gas protect unit.
文摘The oxidation of two phase Cu Cr alloys containing 25% and 50% Cr prepared by powder metallurgy (PM) with a rather uniform two phase microstructure has been studied at 700~900 ℃ under oxygen pressure below the stability of the copper oxides. The two PM alloys oxidized very slowly and formed only external Cr 2O 3 scales rather than undergoing an internal oxidation of chromium. This result is attributed mainly to a supply of chromium from the small Cr rich particles dispersed within the Cu rich phase. The oxidation kinetics of the two PM Cu Cr alloys approximately followed the parabolic rate law. The scaling rates are of the same order as those measured for pure chromium under the same oxygen pressure, but smaller than those for the alloys of similar composition prepared by normal arc melting techniques, whose compositions were largely non uniform. The results are interpreted in terms of the two phase nature of these alloys.
基金the National Key RESEARCH and Development Program of the Ministry of Science and Technology‘Life Prediction and Operation Risk Assessment of UHV Equipment under long-term Service conditions(No.2017YFB0902705)’for supporting this workthe No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)Yunnan Electric Test&Research Institute Group CO.,Ltd for assistance in this paper.
文摘In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature subatmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature subatmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.
基金supported by the No.703 Research Institute of CSIC(China Shipbuilding Industry Corporation)and Yunnan Electric Test&Research Institute Group CO.,Ltd.
文摘In this paper,an efficient boundary condition is applied to solve the photoionization rate,and a two-dimensional numerical simulation is carried out for the development and propagation of an air streamer at low temperature and sub-atmospheric pressure.The results show that the new boundary condition improves the calculation accuracy,but the influence of photoionization on the streamer discharge process is not obvious.The discharge current in the development of streamer discharge is defined,and the corresponding expression of the positive and negative streamer discharge current is given.The influence of the electric field exceeding the threshold value on the discharge process is preliminarily introduced.In the process of discharge,only the propagation velocity of the streamer is obviously higher than that of normal temperature and pressure,and the trend of the other parameters is basically the same as that described in the previous paper.The above results give us a deeper understanding of the discharge characteristics under low temperature and sub-atmospheric pressure,which has certain significance for the development of aviation and high voltage engineering.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.
基金supported by National Natural Science Foundation of China (Grant No.51277063)
文摘The generation and propagation of a streamer is a significant physical process of air gap discharge. Research on the mechanism of streamers under low-pressure conditions is helpful for understanding the process of long-gap discharge in a high-altitude area. This paper describes laboratory investigations of streamer discharge under alternating current(AC) voltage in a low pressure test platform for a 60 cm rod–plane gap at 30 kPa, and analyzes the characteristics of streamer generation and propagation. The results show that the partial streamer and breakdown streamer all occur in the positive half-cycle of AC voltage near the peak voltage at 30 kPa. The partial streamer could cause the distortion of current and voltage waveform, and it appears as the branching characteristic at the initial stage. With the extension of the streamer, the branching and tortuosity phenomena become gradually obvious, but the branching is suppressed when the streamer crosses the gap. The low-pressure condition has little influence on the tortuosity length and the tortuosity number of the streamer, but affect the diameter of streamer obviously.
文摘The effect of high pressure heat treatment on microstructure and compressive properties of low carbon steel were investigated by optical microscope,transmission electron microscope,hardness tester and compression test methods.The results show that martensite appears in low carbon steel at 1-5GPa GPa and 950°C for 15 minutes treatment,high pressure heat treatment can improve the hardness and compressive properties of the steel,the yield strength of the steel increases with increasing pressure,and its compressive properties are better than that treated under normal pressure quenching.
文摘Low Pressure Carburizing (LPC) was introduced in the 90’s in the western Europe Heat Treatment business, mainly for in-house applications where it was especially appreciated for Carburizing of transmission parts. However the success of the LPC units installed for gears Carburizing in the automotive industry has hindered the development of the process in other fields - like subcontracting business -, where its advantages deserve to be enlightened. After a brief review of the principle of the process, the interest of its classical application to transmission parts is described, underlining peculiarly the reduction of the distortion observed when LPC is associated with high pressure gas quenching. Then the less-known advantages of the LPC process, like the high accuracy and reproducibility of the results, the modeling possibility and the simulation easiness, the case-depth uniformity and the full flexibility of the units are considered, showing how they can be beneficial to subcontracting business.