期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode 被引量:1
1
作者 R.KHOSHKHOO A.JAHANGIRIAN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第9期933-942,共10页
A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a diel... A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000. 展开更多
关键词 flow control pulse plasma actuation unsteady flow low reynolds number numerical simulation
下载PDF
Purcell's Swimmer Revisited
2
作者 M. Siva Kumar P. Philominathan 《International Journal of Automation and computing》 EI 2012年第3期325-330,共6页
Purcell’s swimmer was proposed by E. M. Purcell to explain bacterial swimming motions. It has been proved experimentally that a swimmer of this kind is possible under inertial-less and high viscous environment. But w... Purcell’s swimmer was proposed by E. M. Purcell to explain bacterial swimming motions. It has been proved experimentally that a swimmer of this kind is possible under inertial-less and high viscous environment. But we could not investigate all the aspects of this mechanism through experiments due to practical difficulties. The computational fluid dynamics (CFD) provides complementary methods to experimental fluid dynamics. In particular, these methods offer the means of testing theoretical advances for conditions unavailable experimentally. Using such methodology, we have investigated the fluid dynamics of force production associated with the Purcell’s swimmer. By employing dynamic mesh and user-defined functions, we have computed the transient flow around the swimmer for various stroke angles. Our simulations capture the bidirectional swimming property successfully and are in agreement with existing theoretical and experimental results. To our knowledge, this is the first CFD study which shows the fact that swimming direction depends on stroke angle. We also prove that for small flapping frequencies, swimming direction can also be altered by changing frequency-showing breakdown of Stokes law with inertia. 展开更多
关键词 Very low reynolds number flow swimming motion of bacteria dynamic mesh Purcell’s swimmer Stokes flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部