The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop...The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.展开更多
Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were ...Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were developed by empirical reasoning without rigorous theoretical analysis. Hence in this letter, hierarchical-infeed interactive effective short-circuit ratio (HIESCR) index is first used for strength evaluation of HIDC systems with complex inter-inverter interactions considered. Boundary HIESCR (BHIESCR) is also introduced in the proposed distinction method of weak and strong AC grids. That is, weak (or strong) AC grids are, respectively, identified when HIESCR is less (or greater) than BHIESCR. Second, it is shown BHIESCR remains almost unchanged as 3.0 versus various system parameters and rated operation variables based on rigorous theoretical analysis. This salient feature makes the proposed method more accurate than earlier methods. Finally, the proposed method is validated by simulations based on the PSCAD/EMTDC program.展开更多
文摘The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others.
基金supported in part by the National Natural Science Foundation of China(51907067)in part by the Industrial Research Chair Program of the Natural Sciences and Engineering Research Councilof Canada。
文摘Distinction of weak and strong AC grids for emerging hierarchical-infeed LCC-UHVDC systems is important for planning and operation departments. However, accuracy of earlier distinction methods is limited as they were developed by empirical reasoning without rigorous theoretical analysis. Hence in this letter, hierarchical-infeed interactive effective short-circuit ratio (HIESCR) index is first used for strength evaluation of HIDC systems with complex inter-inverter interactions considered. Boundary HIESCR (BHIESCR) is also introduced in the proposed distinction method of weak and strong AC grids. That is, weak (or strong) AC grids are, respectively, identified when HIESCR is less (or greater) than BHIESCR. Second, it is shown BHIESCR remains almost unchanged as 3.0 versus various system parameters and rated operation variables based on rigorous theoretical analysis. This salient feature makes the proposed method more accurate than earlier methods. Finally, the proposed method is validated by simulations based on the PSCAD/EMTDC program.