Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diamet...The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures should be adopted to weaken high-frequency interference such as using soft hammer, hammer cushion and adoptingsuitable receiving point.展开更多
The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement re...The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption.展开更多
提出了缺陷桩-梁系统的理论模型。桩周土采用了三维连续介质模型,桩身则采用Rayleigh-love杆件,以考虑大直径桩的横向惯性效应。为了模拟桩身的缺陷段,采用了不同于正常桩身半径的桩段。通过结合阻抗函数递推法、虚土环法(ring soil pil...提出了缺陷桩-梁系统的理论模型。桩周土采用了三维连续介质模型,桩身则采用Rayleigh-love杆件,以考虑大直径桩的横向惯性效应。为了模拟桩身的缺陷段,采用了不同于正常桩身半径的桩段。通过结合阻抗函数递推法、虚土环法(ring soil pile theory,简称RSPT)和修正的阻抗函数递推法(amended impedance function transfer method,简称AIFTM),得到了桩-土系统的桩顶阻抗。桩顶梁采用了Timoshenko杆件进行模拟,同时在桩-梁连接处施加瞬态激振。成功求得了桩-梁系统动力响应在频域内的解析解,并利用离散傅里叶变换获得了时域内的半解析解。为了验证模型的合理性,将获得的半解析解与试验数据和有限元法结果进行了对比。研究结果显示,桩-梁系统较为适合的激振拾取点通常为桩梁连接处,同时需要综合考虑桩梁参数的影响。最后,通过参数分析方法探讨了在桩-梁系统上使用低应变测试的注意事项。展开更多
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
基金supported by the National Natural Science Foundation of China(Grant No.51008115)the Provincial Science Foundation of Jiangsu(Grant No.BK2008040)
文摘The high-frequency interference exists obviously in low strain integrity testing of large-diameter pipe pile when a transientpoint load is applied. An analytical solution of vertical vibratory response of large-diameter pipe piles in low strain testing isdeduced in this paper. The analytical solution is verified by both numerical simulation and model test results. The time-domainvelocity responses on pile top are analyzed. The calculation results indicate that the time-domain responses at various pointssuffer different high-frequency interferences, thus the peak values and phases of different points are different. The influence ofvibratory modes on high-frequency interference is analyzed. It is found that the high-frequency interference at 90° point main-ly derives from the second flexural mode, but for other points it mainly originates from the first flexural mode. The factors af-fecting the frequency and peak value of interference waves have been investigated in this study. The results indicate that thelarger radius angle between the receiving and 90° points leads to greater peak value of high frequency wave crest. The leasthigh-frequency interference is detected at the angle of 90°. The frequency of interference waves is decreased with the increaseof pile radius, while the peak value is almost constant. The frequency is also related to pile modulus, i.e. the larger pile modu-lus results in greater frequency. The peak value varies with impulse width and soil resistance, i.e., the wider impulse width andlarger soil resistance cause smaller peak value. In conclusion, the frequency of interference waves is dependent on the geomet-rical and mechanics characteristics of the piles such as pile radius and modulus, but independent of the external conditionssuch as impulse width and soil resistance. On the other hand, the peak value of interference waves is mainly dependent on theexternal conditions but independent of the geometrical and mechanics characteristics of the piles. In practice, some externalmeasures should be adopted to weaken high-frequency interference such as using soft hammer, hammer cushion and adoptingsuitable receiving point.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50679017,50778063)the Science Foundation of Jiangsu Province(No.BK2008040).
文摘The three-dimensional effects of pile head and the applicability of plane-section assumption are main problems in low-strain dynamic tests on cast-in-situ concrete thin-wall pipe piles.The velocity and displacement responses were calculated by a theoretical formula deduced by the authors.The frequency and influencing factor of high-frequency interference were analyzed.A numerical method was established to calculate the peak value and arrival time of incoming waves on top of the piles.The regularity along circumferential and the influence of radius or impulse width were studied.The applicability of plane-section assumption was investigated by comparison of velocity responses at different points in the sections at different depths.The waveform of velocity response at different points forked after the first peak,indicating that the propagation of stress waves did not well meet the plane-section assumption.
文摘提出了缺陷桩-梁系统的理论模型。桩周土采用了三维连续介质模型,桩身则采用Rayleigh-love杆件,以考虑大直径桩的横向惯性效应。为了模拟桩身的缺陷段,采用了不同于正常桩身半径的桩段。通过结合阻抗函数递推法、虚土环法(ring soil pile theory,简称RSPT)和修正的阻抗函数递推法(amended impedance function transfer method,简称AIFTM),得到了桩-土系统的桩顶阻抗。桩顶梁采用了Timoshenko杆件进行模拟,同时在桩-梁连接处施加瞬态激振。成功求得了桩-梁系统动力响应在频域内的解析解,并利用离散傅里叶变换获得了时域内的半解析解。为了验证模型的合理性,将获得的半解析解与试验数据和有限元法结果进行了对比。研究结果显示,桩-梁系统较为适合的激振拾取点通常为桩梁连接处,同时需要综合考虑桩梁参数的影响。最后,通过参数分析方法探讨了在桩-梁系统上使用低应变测试的注意事项。