期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting energy-storage capability in carbon-based supercapacitors using low-temperature water-in-salt electrolytes 被引量:2
1
作者 Joao Pedro A.Santos Manuel J.Pinzón +4 位作者 érick A.Santos Rafael Vicentini Cesar J.B.Pagan Leonardo M.Da Silva Hudson Zanin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期521-530,I0013,共11页
Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, ... Supercapacitors(SCs) are high-power energy storage devices with ultra-fast charge/discharge properties.SCs using concentrated aqueous-based electrolytes can work at low temperatures due to their intrinsic properties, such as higher freezing point depression(FPD) and robustness. Besides the traditional organic-and aqueous-based(salt-in-water) electrolytes used in SCs, water-in-salt(WISE) sodium perchlorate electrolytes offer high FPD, non-flammability, and low-toxicity conditions, allowing the fabrication of safer, environmentally friendly, and more robust devices. For the first time, this work reports a comprehensive study regarding WISE system’s charge-storage capabilities and physicochemical properties under low-temperature conditions(T < 0 ℃) using mesoporous carbon-based electrodes. The effect of temperature reduction on the electrolyte viscosity and electrical properties was investigated using different techniques and the in-situ(or operando) Raman spectroscopy under dynamic polarization conditions.The cell voltage, equivalent series resistance, and specific capacitance were investigated as a function of the temperature. The cell voltage(U) increased ~ 50%, while the specific capacitance decreased ~20%when the temperature was reduced from 25 ℃ to -10 ℃. As a result, the maximum specific energy(E = CU^(2)/2) increased ~ 100%. Therefore, low-temperature WISEs are promising candidates to improve the energy-storage characteristics in SCs. 展开更多
关键词 Carbon supercapacitors Water-in-salt electrolytes low-temperature charge-storage Specific energy improvement at low temperatures
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部