Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR...Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.展开更多
The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent m...The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.展开更多
The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low tempe...The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low temperature stress with low light (TL stress) (16/12℃, day/night, PFD 100 μmol m^-2 s-1). The results showed that under TL stress, the net photosynthesis rate (Pn), carboxylation efficiency (CE), apparent quantum yield (AQY), maximal photochemical efficiency (Fv/Fm) of PSII, quantum yield of PSII electron transport (ФPSII), and photochemical quenching (qP) of the chrysanthemum leaves in all treatments were significantly decreased, but the decreases were alleviated by ASA, CaCl2, and ASA + CaCl2 treatments compared with the controls. The alleviating effect of ASA + CaCI2 was better than either ASA or CaCl2 single treatment. Moreover, the ASA + CaCl2 treatment highly improved the chlorophyll content, relatively improved the number and size of chloroplast and starch grain in the leaves of chrysanthemum plants compared with ASA and CaCl2 treatments. It was indicated that ASA and/or CaCI2 could regulate the photosynthetic functions in the leaves of chrysanthemum plants to enhance the resistance against TL stress. On the other hand, reduction in relative conductance rate implied that ASA and/ or CaCl2 could protect from membrane injury in leaves of chrysanthemum plants. The activities of SOD, POD, and CAT in the treated leaves of chrysanthemum were increased as compared with the controls. It was suggested that ASA and/or CaCl2 had positive regulation effects on the defence enzyme activities in chrysanthemum leaves which could protect the photosynthetic apparatus to a certain degree under the TL stress. In brief, the treatment of ASA together with CaCl2 was better for chrysanthemum plants to adapt TL stress than single ASA or CaCl2 treatments.展开更多
[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as...[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.展开更多
Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling lea...Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling leaves were induced by increasing Mn^2+, Cu^2+, or Zn^2+ under low temperature stress, especially 48 h afterwards. The activities of Cu/Zn-SOD and Mn-SOD at 0 and 48 h after treatment were in accordance with their gene expression levels, which implied that the transcriptional regulation plays key roles in regulating their activities at the early stage of low temperature stress. Gene expressions of Cu/Zn-SOD and Mn-SOD declined at 96 h, but Cu/Zn-SOD and Mn-SOD activities still remain high, which suggested that Cu/Zn-SOD and Mn-SOD activities might be regulated by other factors after transcription at the later stage of low temperature stress. Therefore, we concluded that the increasing Mn^2+, Cu^2+, or Zn^2+ could increase the capacity of scavenging ROS in cucumber seedlings under low temperature stress by inducing gene expressions of Cu/ Zn-SOD and Mn-SOD, elevating activities of Cu/Zn-SOD, Mn-SOD, or regulating other factors after transcription.展开更多
Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize se...Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize seedlings in response to cold remain poorly understood. In this study, using RNA-seq, we investigated the transcriptome profiles of two sweet com inbred lines, "Richao"(RC) and C5, under cold stress. A total of 357 and 455 differentially expressed genes(DEGs) were identified in the RC and C5 lines, respectively, 94 DEGs were detected as common DEGs related to cold response in both genotypes, and a total of 589 DEGs were detected as cold tolerance-associated genes. By combining protein function clustering analysis and significantly enriched Gene Ontology(GO) terms analysis,we suggest that transcription factors may play a dominating role in the cold stress response and tolerance of sweet com. Furthermore, 74 differentially expressed transcription factors were identified, of those many genes involved in the metabolism and regulation of hormones. These results expand our understanding of the complex mechanisms involved in chilling tolerance in maize, and provide a set of candidate genes for further genetic analyses.展开更多
[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma m...[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma membrane permeability, free proline content, soluble sugar content, malondialdehyde (MDA) content and chlorophyll content, the change law of these indices of P. nagi seedlings under natural conditions and artificially controlled low temperature conditions within the continuous 5 d was studied. [Result] The soluble sugar content, free proline content, MDA content and plasma membrane permeability of P. nagi seedlings were slightly in- creased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. P. nagi seedlings produced active response to low temperature stress, so the low temperature injury P. nagi seedlings suffered was reduced. [Conclusion] The study provided theoretical basis for winter management in P. nagi cultivation in Hanjiang plain area.展开更多
[Objective] The mRNA expression level changes of S-adenosylmethionine synthetase (SAMS) under low temperature stress was studied. [Method] Total RNA were extracted from leaves, stem and earthnut of sweet potato 0,12...[Objective] The mRNA expression level changes of S-adenosylmethionine synthetase (SAMS) under low temperature stress was studied. [Method] Total RNA were extracted from leaves, stem and earthnut of sweet potato 0,12,24,48 and 72 h after low temperature treatement, mRNA expression level was analyzed by reverse expression and Real-time PCR technique. [Result] The expression quality of the gene extracted from leaves, stem and earthnut increased and the expression quality reached the peak point 24,72 and 72 h after low temperature treatment respectively. The expression change of earthnut was the biggest. [Conclusion] Low temperature was good for increasing mRNA expression of relevart genes.展开更多
[Objective] To study the ecophysiological effects of low temperature stress on Actinidia arguta (Seib.et.Zucc.), and provide a theoretical basis for the introduc- tion and breeding of cold resistant varieties. [Meth...[Objective] To study the ecophysiological effects of low temperature stress on Actinidia arguta (Seib.et.Zucc.), and provide a theoretical basis for the introduc- tion and breeding of cold resistant varieties. [Method] A. arguta as the test material was processed at room temperature of 4 ℃ to determine the contents of chloro- phyll, water soluble sugar, water soluble protein, free proline, MDA, and antioxidant enzymes (POD activity, SOD activity, CAT activity) with the treatment at 25℃ as the control. [Results] The results indicated that with the prolonging of stress time, the content of chlorophyll was first increased and then decreased, and the content of MDA was increased; soluble sugar content of seedling leaf decreased gradually, while the soluble protein and proline content of seedling leaves were first increased and then decreased; the activities of SOD and POD were displayed a decline trend, meanwhile the activities of CAT was first increased and then decreased. [Conclu- sion] The various indicators showed that under low temperature stress, the chloro- phyll content decreased accompanied with membrane lipid peroxidation and MDA accumulation, and soluble sugar, soluble protein, free proline and antioxidant en- zymes play a protective role in different degrees.展开更多
[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the ty...[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the types and regulation of miRNA under cold,heat,drought,high salt,and mechanical stress.However,there are few studies on miRNA under low temperature stress in chewing cane.The target genes of miR394 and miR825 in chewing cane were predicted and functionally analyzed by bioinformatics technology.[Results]The results showed that the target genes of miR394 and miR825 were mainly members of the WRKY transcription factor family,involved in plant growth,development and stress resistance.Real-time fluorescence quantitative PCR analyzed the expression characteristics of target miRNA in different tissues of chewing cane at different periods of low temperature stress.[Conclusions]The results showed that the expression of chewing cane miR394 and miR408 had temporal and spatial specificity and tissue specificity,both of which could respond to low temperature stress with significant differential expression.展开更多
The objective of the study was to explore the effect of acute low temperature stress on VO2 and Vf of Silurus meridionalis and Pelteobag vachelli after 10 minutes cold water bath with different temperature.The investi...The objective of the study was to explore the effect of acute low temperature stress on VO2 and Vf of Silurus meridionalis and Pelteobag vachelli after 10 minutes cold water bath with different temperature.The investigation was operated under the temperature of 24 ℃.It was found that the VO2 and Vf of Silurus meridionalis after 6 and 0 ℃ stress showed a decrease-increase-decrease trend while other groups showed a rapid increase then slowly recovery trend.The VO2 and Vf of Pelteobag vachelli after 0 ℃stress showed a decrease-increase-decrease trend while other groups showed an increase then slowly recovery process.It was suggested that Pelteobag vachelli was more adaptive to acute cold stress,but it cost more energy adapting to cold stress compared to Silurus meridionalis.展开更多
Low temperature and sparse light in early spring is one of the factors causing reduction for rice production. So it is important to develop cold tolerance cultivars. In the present study, cold tolerance characters of ...Low temperature and sparse light in early spring is one of the factors causing reduction for rice production. So it is important to develop cold tolerance cultivars. In the present study, cold tolerance characters of 36 parents and 423 rice lines from 68 hybrid groups were investigated at seedling stage under low tempera- ture and sparse light conditions in field. There were 10 parent accessions with strong cold tolerance of level 1. Among them, 3 were common wild rice accessions; 4 were japonica rice cultivars; 2 were indica rice; 1 was offspring from hybrid be- tween indica and japonica.There were 33 lines with strong cold tolerance of level 1 from the hybrid groups of common wild rice,and 15 from the hybrid groups of IRBB5, and only 3 from the hybrid groups of BPHR96. There were abundant cold tolerance resources in rice germplasm. It was feasible to develop cold tolerance cul- tivars from the hybrids among common wild rice, japonica cultivars and indica culti- vars.展开更多
Using potato plants overexpressing spermidine synthase(SPDS) gene as experimental materials, changes in chlorophyll content, malondialdehyde(MDA) content and superoxide dismutase(SOD) activity of potato leaves u...Using potato plants overexpressing spermidine synthase(SPDS) gene as experimental materials, changes in chlorophyll content, malondialdehyde(MDA) content and superoxide dismutase(SOD) activity of potato leaves under low temperature stress were determined. According to the results, chlorophyll content of experimental plants showed a decreasing trend; MDA content of 01-47 was significantly higher than that of Atlantic; MDA content of 01-6 and 01-49 was significantly lower than that of Atlantic; SOD activity of 01-6 and 01-47 was higher than that of Atlantic. Potato lines 01-6 and 01-47 can be further cultivated to breed new cold-resistant potato varieties.展开更多
The effects of different levels of CaCl 2 on photosynthesis under low night temperature(8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+through the artificial clim...The effects of different levels of CaCl 2 on photosynthesis under low night temperature(8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+through the artificial climate chamber potted culture test.The results indicated that Ca2+,by means of improving the stomatal conductivity of peanut leaves under low night temperature stress,may mitigate the decline of photosynthetic rate in the peanut leaves.The regulation with 15 mmol L-1CaCl 2(Ca15) was the most effective,compared with other treatments.Subsequently,the improvement of Ca2+on peanut photosynthesis under low night temperature stress was validated further through spraying with Ca15,Ca2+chelator(ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists(trifluonerazine; TFP).And CaM(Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+mitigating photosynthesis limitations in peanuts under low night temperature stress.展开更多
The dynamics of chlorophyll content, leaf area and photosynthesis of cucumber seedlings were studied under sole stress of two low temperatures and low light intensity as well as combined stresses of low light intensit...The dynamics of chlorophyll content, leaf area and photosynthesis of cucumber seedlings were studied under sole stress of two low temperatures and low light intensity as well as combined stresses of low light intensity and the two low temperatures. The results showed that low light intensity reduced sensitivity of cucumber to low temperature and improved chlorophyll content, leaf area and chlorophyll fluorescence quantum yield. The photosynthesis rate was reduced under low light intensity. The intensity of light played the leading role in growth of cucumber under the low temperature condition, while the low temperature played the leading role under the critical low temperature condition. There were differences in reaction to light and temperature among different varieties. The tolerance to low temperature and low light intensity was not always synergetic for the same cucumber variety.展开更多
To study the effect of low temperature stress on hematological parameters and HSP gene expression in the turbot (Seophthalmus maximus), water temperature was lowered rapidly from 18 to 1℃. During the cooling proces...To study the effect of low temperature stress on hematological parameters and HSP gene expression in the turbot (Seophthalmus maximus), water temperature was lowered rapidly from 18 to 1℃. During the cooling process, three individuals were removed from culture tanks at 18, 13, 8, 5, 3, and 1℃. Blood samples and tissues were taken from each individual, hematological indices and HSP gene expression in tissues were measured. The red blood cell count, white blood cell count, and hemoglobin concentration decreased significantly (P〈0.05) as temperature decreased. Enzyme activities of plasma alanine transaminase and creatine kinase increased as temperature decreased, whereas aspartic transaminase and γ-glutamyl transpeptidase activities displayed no obvious changes above 1℃ and lactate dehydrogenase activity increased first and then decreased. Blood urea nitrogen and uric acid levels were highest at 8℃, and creatinine concentration was highest at 3℃. The concentrations of plasma cortisol, cholesterol, and triglyceride all increased significantly (P〈0.05) as temperature decreased. The serum glucose concentration increased first and then decreased to the initial level. The HSP70 mRNA expression showed various patterns in different tissues, whereas HSP90 mRNA expression showed the same tendency in all tissues. Overall, these results indicate that temperature decreases in the range of 8 to 5℃ may induce a stress response in S. maximus and that temperature should be kept above 8℃ in the aquaculture setting to avoid damage to the fish.展开更多
The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical proper...The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.展开更多
The study was designated to explore the physiological mechanism of cold tolerance enhanced by phosphate in rice. An experiment was conducted to investigate the effects of different levels of phosphate fertilizer on co...The study was designated to explore the physiological mechanism of cold tolerance enhanced by phosphate in rice. An experiment was conducted to investigate the effects of different levels of phosphate fertilizer on cold tolerance and its related physiological parameters in rice seedings (chilling-sensitive cv. Changbai 9 and chilling-tolerant cv. Jijing 81) under low temperature stress. At the same time, the identification of cold tolerance was conducted. Compared with the normal temperature treatment, the relative chlorophyll content, photosynthesis rate, Fv/Fm and qP decreased and index of unsaturated fatty acid increased in rice under low temperature stress. The effect of chilling-sensitive cultivars was more than that of chilling-tolerant cultivars, more phosphorus fertilizer properly improved seedling quality of rice, slowed relative chlorophyll content dropping degree of rice seeding, increased photosynthesis rate, Fv/Fm, qP and index of unsaturated fatty acids, and enhanced the ability to chilling-tolerant cultivars under low temperature. The effect on chilling-tolerant cultivars was significantly higher than that on chilling sensitive cultivars by applying more phosphorus fertilizer. Phosphate regulated photosynthetic physiology and membrane fluidity to reduce injury by low temperature, and increasd the cold tolerance capacity of rice.展开更多
This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabric...This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabrics in terms of the low - stress mechanical properties of bending, shear, and tensile deformation. It is found that there are very significant correlations between the corresponding parameters for extensibility and shear rigidity obtained from the test results of the two systems. The correlation between the values of bending rigidity obtained from the two systems is only moderate. Furthermore, for the fabrics tested in this study, the values of bending rigidity, shear rigidity, and extensibility measured using the KES - F instruments are higher than those of the corresponding parameters measured using the FAST instruments. The linear regression equation is given for each pair of corresponding parameter.展开更多
The authors have studied the effects of Pyrroioguinloine quinone (PQQ) on superoxide dismutase (SOD), Ascorbid acid(AsA) peroxidase (AsAPOD), glutathion (GSH) and electrolytic leakage of cotyledon in cucumber seedling...The authors have studied the effects of Pyrroioguinloine quinone (PQQ) on superoxide dismutase (SOD), Ascorbid acid(AsA) peroxidase (AsAPOD), glutathion (GSH) and electrolytic leakage of cotyledon in cucumber seedling under low temperature stress, meanwhile, 8-hydroquinone (8-HQ) and AsA (activeoxiygen scavengers) have been made use of in comparison with PQQ. The results indicate that the activities of SOD, AsAPOD and content of GSH can be increased by PQQ. The relative conductivity of cotyledon in cucumber seedling is decreased for PQQ possesses the ability of cleaning up free redical of oxygen. We came to the conclusion that PQQ can act as a kind of active oxygen scavenger and adjust the metabolism on free radical of oxygen to balance in plants and enhance resistance finally in plants.展开更多
基金This research was funded by the Natural Science Foundation of Shandong Province of China(ZR2022MC144).
文摘Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines.
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘The most recent research findings on the tolerance of fruit trees to cold stress are reviewed from a molecular perspective,including the perception and transduction of low temperature calcium signaling,CBF-dependent molecular regulatory mechanisms,non-CBF-dependent molecular regulatory mechanisms,and so forth.The objective is to provide a reference basis for further improving the cold resistance of fruit trees and cultivating new varieties of hardy plants.
基金supported by the National Key Tech-nologies R&D Program of China during the 11th Five-Year-Plan period (2006BAD10B07)the Project for Returned Overseas Atudents to Start Research from Ministry of Education,China (33206)
文摘The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low temperature stress with low light (TL stress) (16/12℃, day/night, PFD 100 μmol m^-2 s-1). The results showed that under TL stress, the net photosynthesis rate (Pn), carboxylation efficiency (CE), apparent quantum yield (AQY), maximal photochemical efficiency (Fv/Fm) of PSII, quantum yield of PSII electron transport (ФPSII), and photochemical quenching (qP) of the chrysanthemum leaves in all treatments were significantly decreased, but the decreases were alleviated by ASA, CaCl2, and ASA + CaCl2 treatments compared with the controls. The alleviating effect of ASA + CaCI2 was better than either ASA or CaCl2 single treatment. Moreover, the ASA + CaCl2 treatment highly improved the chlorophyll content, relatively improved the number and size of chloroplast and starch grain in the leaves of chrysanthemum plants compared with ASA and CaCl2 treatments. It was indicated that ASA and/or CaCI2 could regulate the photosynthetic functions in the leaves of chrysanthemum plants to enhance the resistance against TL stress. On the other hand, reduction in relative conductance rate implied that ASA and/ or CaCl2 could protect from membrane injury in leaves of chrysanthemum plants. The activities of SOD, POD, and CAT in the treated leaves of chrysanthemum were increased as compared with the controls. It was suggested that ASA and/or CaCl2 had positive regulation effects on the defence enzyme activities in chrysanthemum leaves which could protect the photosynthetic apparatus to a certain degree under the TL stress. In brief, the treatment of ASA together with CaCl2 was better for chrysanthemum plants to adapt TL stress than single ASA or CaCl2 treatments.
基金Supported by Zhejiang Basic Public Welfare Research Program Project(LGN21C020006)Key Research and Development Project of Zhejiang Province(2021C02057)+1 种基金Zhejiang Major Science and Technology Project of Agricultural New Variety(Upland Food)Breeding(2021C02064)Key Research and Development Project of Zhejiang Province(2022C04024).
文摘[Objectives]The paper was to explore the effects of low temperature stress on germination and physiological characteristics of different sweet maize varieties.[Methods]Taking Taitian 264,Zhexuetian 1 and Chaotian 4 as the research objects,the changes in germination potential,germination index,plant height,biomass,and antioxidant enzyme activity of maize seeds were studied under optimal temperature conditions(25℃)and low temperature stress conditions(10℃).[Results]Under 10℃stress,the germination rate and germination index of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4.Under low temperature stress,Taitian 264 exhibited the least reduction in height and biomass,while Zhexuetian 1 had the most reduction.Additionally,the SOD and POD activities of Taitian 264 were higher than that of Zhexuetian 1 and Chaotian 4 under both temperature conditions,while the MDA content of Taitian 264 was lower.Taitian 264 showed strong germination ability against low temperature stress.[Conclusions]This study provides a basis for timely sowing practices of sweet maize in agricultural production.
基金supported by a grant from the National Natural Science Foundation of China (30571271)
文摘Effects of increasing Mn^2+, Cu^2+, or Zn^2+ on SOD expressions were studied in cucumber seedlings under low temperature stress. Both gene expressions and activities of Cu/Zn-SOD and Mn-SOD in cucumber seedling leaves were induced by increasing Mn^2+, Cu^2+, or Zn^2+ under low temperature stress, especially 48 h afterwards. The activities of Cu/Zn-SOD and Mn-SOD at 0 and 48 h after treatment were in accordance with their gene expression levels, which implied that the transcriptional regulation plays key roles in regulating their activities at the early stage of low temperature stress. Gene expressions of Cu/Zn-SOD and Mn-SOD declined at 96 h, but Cu/Zn-SOD and Mn-SOD activities still remain high, which suggested that Cu/Zn-SOD and Mn-SOD activities might be regulated by other factors after transcription at the later stage of low temperature stress. Therefore, we concluded that the increasing Mn^2+, Cu^2+, or Zn^2+ could increase the capacity of scavenging ROS in cucumber seedlings under low temperature stress by inducing gene expressions of Cu/ Zn-SOD and Mn-SOD, elevating activities of Cu/Zn-SOD, Mn-SOD, or regulating other factors after transcription.
基金supported by the Sciences and Technology Project of Guangdong Province (Nos. 20148070706012, 20158020202006)the Foundation of the President of the Guangdong Academy of Agricultural Sciences (No. 201509)the Science and Information Technology Bureau of Guangzhou (No. 2013J2200083)
文摘Stress induced by low temperature, which represents a widespread environmental factor,strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize seedlings in response to cold remain poorly understood. In this study, using RNA-seq, we investigated the transcriptome profiles of two sweet com inbred lines, "Richao"(RC) and C5, under cold stress. A total of 357 and 455 differentially expressed genes(DEGs) were identified in the RC and C5 lines, respectively, 94 DEGs were detected as common DEGs related to cold response in both genotypes, and a total of 589 DEGs were detected as cold tolerance-associated genes. By combining protein function clustering analysis and significantly enriched Gene Ontology(GO) terms analysis,we suggest that transcription factors may play a dominating role in the cold stress response and tolerance of sweet com. Furthermore, 74 differentially expressed transcription factors were identified, of those many genes involved in the metabolism and regulation of hormones. These results expand our understanding of the complex mechanisms involved in chilling tolerance in maize, and provide a set of candidate genes for further genetic analyses.
基金Supported by Doctoral Starting Fund of Yangtze University(801190010105)~~
文摘[Objective] The paper was to study the effect of low temperature stress on physiological and biochemical characteristics of Podocarpus nagi. [Method] Through the determination of physiological indices such as plasma membrane permeability, free proline content, soluble sugar content, malondialdehyde (MDA) content and chlorophyll content, the change law of these indices of P. nagi seedlings under natural conditions and artificially controlled low temperature conditions within the continuous 5 d was studied. [Result] The soluble sugar content, free proline content, MDA content and plasma membrane permeability of P. nagi seedlings were slightly in- creased compared with control; the chlorophyll content gradually decreased with the prolongation of low temperature stress. P. nagi seedlings produced active response to low temperature stress, so the low temperature injury P. nagi seedlings suffered was reduced. [Conclusion] The study provided theoretical basis for winter management in P. nagi cultivation in Hanjiang plain area.
文摘[Objective] The mRNA expression level changes of S-adenosylmethionine synthetase (SAMS) under low temperature stress was studied. [Method] Total RNA were extracted from leaves, stem and earthnut of sweet potato 0,12,24,48 and 72 h after low temperature treatement, mRNA expression level was analyzed by reverse expression and Real-time PCR technique. [Result] The expression quality of the gene extracted from leaves, stem and earthnut increased and the expression quality reached the peak point 24,72 and 72 h after low temperature treatment respectively. The expression change of earthnut was the biggest. [Conclusion] Low temperature was good for increasing mRNA expression of relevart genes.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest (201303093)the Key Project for Agricultural Improved Variety Breeding of Shandong Province (Lunongliang[2016]No.6~~
文摘[Objective] To study the ecophysiological effects of low temperature stress on Actinidia arguta (Seib.et.Zucc.), and provide a theoretical basis for the introduc- tion and breeding of cold resistant varieties. [Method] A. arguta as the test material was processed at room temperature of 4 ℃ to determine the contents of chloro- phyll, water soluble sugar, water soluble protein, free proline, MDA, and antioxidant enzymes (POD activity, SOD activity, CAT activity) with the treatment at 25℃ as the control. [Results] The results indicated that with the prolonging of stress time, the content of chlorophyll was first increased and then decreased, and the content of MDA was increased; soluble sugar content of seedling leaf decreased gradually, while the soluble protein and proline content of seedling leaves were first increased and then decreased; the activities of SOD and POD were displayed a decline trend, meanwhile the activities of CAT was first increased and then decreased. [Conclu- sion] The various indicators showed that under low temperature stress, the chloro- phyll content decreased accompanied with membrane lipid peroxidation and MDA accumulation, and soluble sugar, soluble protein, free proline and antioxidant en- zymes play a protective role in different degrees.
基金Supported by Science and Technology Research Project of Henan Provincial Science and Technology Department(222102110448)Key Scientific Research Projects of Colleges and Universities in Henan Province(21B210007)Open Research Project of Guangxi Sugarcane Genetic Improvement Key Laboratory(19-185-24-K-01-01).
文摘[Objectives]To explore microRNA expression characteristics related to low temperature stress in chewing cane.[Methods]The research on miRNA under abiotic stress of sugarcane at home and abroad mainly focused on the types and regulation of miRNA under cold,heat,drought,high salt,and mechanical stress.However,there are few studies on miRNA under low temperature stress in chewing cane.The target genes of miR394 and miR825 in chewing cane were predicted and functionally analyzed by bioinformatics technology.[Results]The results showed that the target genes of miR394 and miR825 were mainly members of the WRKY transcription factor family,involved in plant growth,development and stress resistance.Real-time fluorescence quantitative PCR analyzed the expression characteristics of target miRNA in different tissues of chewing cane at different periods of low temperature stress.[Conclusions]The results showed that the expression of chewing cane miR394 and miR408 had temporal and spatial specificity and tissue specificity,both of which could respond to low temperature stress with significant differential expression.
基金Supported by the National Natural Science Foundation of China(30371121)the Natural Science Foundation of Chongqing the Educa-tion Committee Foundation of Chongqing~~
文摘The objective of the study was to explore the effect of acute low temperature stress on VO2 and Vf of Silurus meridionalis and Pelteobag vachelli after 10 minutes cold water bath with different temperature.The investigation was operated under the temperature of 24 ℃.It was found that the VO2 and Vf of Silurus meridionalis after 6 and 0 ℃ stress showed a decrease-increase-decrease trend while other groups showed a rapid increase then slowly recovery trend.The VO2 and Vf of Pelteobag vachelli after 0 ℃stress showed a decrease-increase-decrease trend while other groups showed an increase then slowly recovery process.It was suggested that Pelteobag vachelli was more adaptive to acute cold stress,but it cost more energy adapting to cold stress compared to Silurus meridionalis.
基金Supported by Guangxi Natural Science Foundation Item,China(2013GXNSFBA019-066)Guangxi Science Research and Technology Development Project,China(Guikezhong14121001-2-4)Nanning Municipal Science Research and Technology Development Plan Item,China(20132304)~~
文摘Low temperature and sparse light in early spring is one of the factors causing reduction for rice production. So it is important to develop cold tolerance cultivars. In the present study, cold tolerance characters of 36 parents and 423 rice lines from 68 hybrid groups were investigated at seedling stage under low tempera- ture and sparse light conditions in field. There were 10 parent accessions with strong cold tolerance of level 1. Among them, 3 were common wild rice accessions; 4 were japonica rice cultivars; 2 were indica rice; 1 was offspring from hybrid be- tween indica and japonica.There were 33 lines with strong cold tolerance of level 1 from the hybrid groups of common wild rice,and 15 from the hybrid groups of IRBB5, and only 3 from the hybrid groups of BPHR96. There were abundant cold tolerance resources in rice germplasm. It was feasible to develop cold tolerance cul- tivars from the hybrids among common wild rice, japonica cultivars and indica culti- vars.
基金Supported by National Natural Science Foundation of China(NSFC)-Xinjiang Joint Fund(U12031039)~~
文摘Using potato plants overexpressing spermidine synthase(SPDS) gene as experimental materials, changes in chlorophyll content, malondialdehyde(MDA) content and superoxide dismutase(SOD) activity of potato leaves under low temperature stress were determined. According to the results, chlorophyll content of experimental plants showed a decreasing trend; MDA content of 01-47 was significantly higher than that of Atlantic; MDA content of 01-6 and 01-49 was significantly lower than that of Atlantic; SOD activity of 01-6 and 01-47 was higher than that of Atlantic. Potato lines 01-6 and 01-47 can be further cultivated to breed new cold-resistant potato varieties.
基金Supported by the China Postdoctoral Science Foundation(2012M510839)Doctoral Fund of Ministry of Education of China(20122103120011)+2 种基金the National Natural Science Initial Foundation of Shenyang Agricultural University,China(20112013)the Postdoctoral Science Foundation of Shenyang Agricultural University,China(105110)the Peanut Nutrition and Fertilizer Program for China Agriculture Research System,China(CARS-14)
文摘The effects of different levels of CaCl 2 on photosynthesis under low night temperature(8°C) stress in peanuts were studied in order to find out the appropriate concentration of Ca2+through the artificial climate chamber potted culture test.The results indicated that Ca2+,by means of improving the stomatal conductivity of peanut leaves under low night temperature stress,may mitigate the decline of photosynthetic rate in the peanut leaves.The regulation with 15 mmol L-1CaCl 2(Ca15) was the most effective,compared with other treatments.Subsequently,the improvement of Ca2+on peanut photosynthesis under low night temperature stress was validated further through spraying with Ca15,Ca2+chelator(ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists(trifluonerazine; TFP).And CaM(Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+mitigating photosynthesis limitations in peanuts under low night temperature stress.
基金supported by the National Natural Science Foundation of China(39830230)Beijing Natural Science Foundation(6O11002).
文摘The dynamics of chlorophyll content, leaf area and photosynthesis of cucumber seedlings were studied under sole stress of two low temperatures and low light intensity as well as combined stresses of low light intensity and the two low temperatures. The results showed that low light intensity reduced sensitivity of cucumber to low temperature and improved chlorophyll content, leaf area and chlorophyll fluorescence quantum yield. The photosynthesis rate was reduced under low light intensity. The intensity of light played the leading role in growth of cucumber under the low temperature condition, while the low temperature played the leading role under the critical low temperature condition. There were differences in reaction to light and temperature among different varieties. The tolerance to low temperature and low light intensity was not always synergetic for the same cucumber variety.
基金Supported by the Special Foundation for Youth Science and Technology of Qingdao(No.14-2-4-59-jch)the Science and Technology Development Planning of Shandong Province(No.2011GGC21007)the National Natural Science Foundation of China(No.41206144)
文摘To study the effect of low temperature stress on hematological parameters and HSP gene expression in the turbot (Seophthalmus maximus), water temperature was lowered rapidly from 18 to 1℃. During the cooling process, three individuals were removed from culture tanks at 18, 13, 8, 5, 3, and 1℃. Blood samples and tissues were taken from each individual, hematological indices and HSP gene expression in tissues were measured. The red blood cell count, white blood cell count, and hemoglobin concentration decreased significantly (P〈0.05) as temperature decreased. Enzyme activities of plasma alanine transaminase and creatine kinase increased as temperature decreased, whereas aspartic transaminase and γ-glutamyl transpeptidase activities displayed no obvious changes above 1℃ and lactate dehydrogenase activity increased first and then decreased. Blood urea nitrogen and uric acid levels were highest at 8℃, and creatinine concentration was highest at 3℃. The concentrations of plasma cortisol, cholesterol, and triglyceride all increased significantly (P〈0.05) as temperature decreased. The serum glucose concentration increased first and then decreased to the initial level. The HSP70 mRNA expression showed various patterns in different tissues, whereas HSP90 mRNA expression showed the same tendency in all tissues. Overall, these results indicate that temperature decreases in the range of 8 to 5℃ may induce a stress response in S. maximus and that temperature should be kept above 8℃ in the aquaculture setting to avoid damage to the fish.
基金Projects(51401128,51275095) supported by the National Natural Science Foundation of ChinaProject(SKLRS-2013-MS-03) supported by the Open Fund from the State Key Laboratory of Robotics and System,China
文摘The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.
基金Supported by the Special Agricultural Project of Agricultural Department (200903003)the Agricultural Modernization Project in the Science and Technology Development Plan of Jilin Province (2009-2010) the High-yield Project of Science and Technology Department (2011BAD16B10)
文摘The study was designated to explore the physiological mechanism of cold tolerance enhanced by phosphate in rice. An experiment was conducted to investigate the effects of different levels of phosphate fertilizer on cold tolerance and its related physiological parameters in rice seedings (chilling-sensitive cv. Changbai 9 and chilling-tolerant cv. Jijing 81) under low temperature stress. At the same time, the identification of cold tolerance was conducted. Compared with the normal temperature treatment, the relative chlorophyll content, photosynthesis rate, Fv/Fm and qP decreased and index of unsaturated fatty acid increased in rice under low temperature stress. The effect of chilling-sensitive cultivars was more than that of chilling-tolerant cultivars, more phosphorus fertilizer properly improved seedling quality of rice, slowed relative chlorophyll content dropping degree of rice seeding, increased photosynthesis rate, Fv/Fm, qP and index of unsaturated fatty acids, and enhanced the ability to chilling-tolerant cultivars under low temperature. The effect on chilling-tolerant cultivars was significantly higher than that on chilling sensitive cultivars by applying more phosphorus fertilizer. Phosphate regulated photosynthetic physiology and membrane fluidity to reduce injury by low temperature, and increasd the cold tolerance capacity of rice.
基金This project was generously funded by International Wool Secretariat
文摘This study compares the test results of the FAST (Fabric Assurance by Simple Testing) with those of the KES - F (Kawabata Evaluation Systems for Fabrics) for a range of nineteen light weight wool and wool blend fabrics in terms of the low - stress mechanical properties of bending, shear, and tensile deformation. It is found that there are very significant correlations between the corresponding parameters for extensibility and shear rigidity obtained from the test results of the two systems. The correlation between the values of bending rigidity obtained from the two systems is only moderate. Furthermore, for the fabrics tested in this study, the values of bending rigidity, shear rigidity, and extensibility measured using the KES - F instruments are higher than those of the corresponding parameters measured using the FAST instruments. The linear regression equation is given for each pair of corresponding parameter.
文摘The authors have studied the effects of Pyrroioguinloine quinone (PQQ) on superoxide dismutase (SOD), Ascorbid acid(AsA) peroxidase (AsAPOD), glutathion (GSH) and electrolytic leakage of cotyledon in cucumber seedling under low temperature stress, meanwhile, 8-hydroquinone (8-HQ) and AsA (activeoxiygen scavengers) have been made use of in comparison with PQQ. The results indicate that the activities of SOD, AsAPOD and content of GSH can be increased by PQQ. The relative conductivity of cotyledon in cucumber seedling is decreased for PQQ possesses the ability of cleaning up free redical of oxygen. We came to the conclusion that PQQ can act as a kind of active oxygen scavenger and adjust the metabolism on free radical of oxygen to balance in plants and enhance resistance finally in plants.