The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had...The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140℃. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110℃ and 320℃. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+-O) to form V5+-NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%.℃-1 at 380℃ 390℃, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4,展开更多
Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and...Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood so far. In this study, the sulfate attack of cement paste incorporating 30% mass of limestone powder was investigated. After 20 ℃ water cured for 7, 14, and 28 days,respectively, 20 mm cube specimens were exposed in a 5% magnesium sulfate solution at(6 ±1) ℃ for periods up to 240 days. Their appearance change, compressive strength development were examined at different storage time, and selected paste samples were examined by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results indicate that all Portland-limstone cement pastes suffer from appearance deterioration to some extent. The compressive strength of cement paste initially increases and after 120 days decreases with increasing exposed period. In addition, the cement paste with short curing time is more susceptible to sulfate attack, which directly leads to the formation of non-binder thaumasite crystal accompanied by the formation of ettringite, gypsum and brucite, and becomes a white, mushy, and incohesive matrix. Additionally, the extent of sulfate attack is greater and the formation of thaumasite is observed earlier for shorter curing time.展开更多
基金This work was supported by the Natural Science Foundation of Beijing, China (No. 8152011) and the Scientific Research Program of Beijing Municipal Education Commission (No. KM201510 005009).
文摘The CeO2-V2O5-WO3/TiO2 (CeO2-VWT) catalysts were prepared by one-step and two-step impregnation methods. The effects of different loading of CeO2 and different preparation methods on De-NOx activity of catalysts had been investigated. CeO2 helped to improve the De-NOx activity and sulfur resistance. The optimal loading of CeO2 was 3% with the De-NOx efficiency reached 89.9% at 140℃. The results showed that the De-NOx activity of 3% CeO2-VWT catalysts by one-step method was the same as two-step method basically and reached the level of industrial applications, the N2 selectivity of catalysts was more than 99.2% between 110℃ and 320℃. In addition, CeO2 promoted the oxidation of NO to NO2, which adsorbed on the Lewis acid site (V5+-O) to form V5+-NO3 and inspired the fast SCR reaction. Not only the thermal stability but also the De-NOx activity of catalysts decreased with excess CeO2 competed with V2O5. Characterizations of catalysts were carried out by XRF, BET, XRD, TG and FT-IR. BET showed that the specific surface area of catalysts decreased with the loading of CeO2 increased, the active components content and specific surface area of catalysts decreased slightly after entering SO2. Ammonium sulfate species were formed in poisoned catalyst which had been investigated by XRF, BET, TG and FT-IR. The largest loss rate of weight fraction was 0.024%.℃-1 at 380℃ 390℃, which was in accordance with the decomposition temperature of NH4HSO4 and (NH4)2SO4,
基金Funded by National Natural Science Foundation of China(No.51378499)China Railway Corporation(No.2014G004-R)Science and Technology of China(No.2010G004-E)
文摘Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood so far. In this study, the sulfate attack of cement paste incorporating 30% mass of limestone powder was investigated. After 20 ℃ water cured for 7, 14, and 28 days,respectively, 20 mm cube specimens were exposed in a 5% magnesium sulfate solution at(6 ±1) ℃ for periods up to 240 days. Their appearance change, compressive strength development were examined at different storage time, and selected paste samples were examined by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results indicate that all Portland-limstone cement pastes suffer from appearance deterioration to some extent. The compressive strength of cement paste initially increases and after 120 days decreases with increasing exposed period. In addition, the cement paste with short curing time is more susceptible to sulfate attack, which directly leads to the formation of non-binder thaumasite crystal accompanied by the formation of ettringite, gypsum and brucite, and becomes a white, mushy, and incohesive matrix. Additionally, the extent of sulfate attack is greater and the formation of thaumasite is observed earlier for shorter curing time.