Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature...Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.展开更多
This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaC...This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.展开更多
Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of t...Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.展开更多
There is a prominent,complex and diverse three-dimensional climate and a variety of meteorological disasters in Qujing area. The risk zoning of low-temperature disasters for flue-cured tobacco planting in Qujing area ...There is a prominent,complex and diverse three-dimensional climate and a variety of meteorological disasters in Qujing area. The risk zoning of low-temperature disasters for flue-cured tobacco planting in Qujing area was studied to provide reference for drawing on advantages and avoiding disadvantages in flue-cured tobacco planting,disaster reduction,and disaster relief services. According to the production practice of fluecured tobacco and local climate analysis,it was determined that flue-cured tobacco in Qujing area was very vulnerable to low temperature during the seedling stage( from early February to middle April) and in the mature period( from early July to early September). Based on the quantitative analysis and evaluation of risk of disaster-causing factors,sensitivity of disaster-breeding environment,vulnerability of carriers,and disaster prevention and reduction capability,a risk assessment model of meteorological disasters was established to precisely evaluate and zone the risk of low-temperature disasters for flue-cured tobacco planting in allusion to the seedling and mature stage in Qujing area by using GIS technology. The risk of lowtemperature disasters for flue-cured tobacco planting during the two periods was divided into four grades,namely low,medium,high and very high risk.展开更多
La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were stud...La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.展开更多
The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transp...The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is comparatively large, Ag as metallic state mainly deposits on the grain boundary of La0.6Dy0.1Sr0.3MnO3, and then the system forms a two-phase composite.When the Ag doping amount is 30% mole ratio, the resistivity of the sample is one order of magnitude smaller than that of low doped samples, and its peak of magnetoresistance at 292 K and in the magnetic field of 0.2 T strengthens apparently and reaches 16.3%, which is over 7 times as large as 2.2% of La0.6Dy0.1Sr0.3MnO3.The two-phase composite system of magnetoresistance based on perovskite manganite consists of two parts:intrinsic magnetoresistance and extrinsic magnetoresistance.However, extrinsic magnetoresistance comes from spin-dependent scattering(SDS) and spin-polarized tunneling(SPT).Magnetoresistance near TC increases due to the contribution of intrinsic magnetoresistance and extrinsic magnetoresistance formed by SDS, and magnetoresistance at low temperature is extrinsic magnetoresistance formed by SPT.展开更多
In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethyla...In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethylamine(Et_3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene(DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide(PI) films was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180 ℃, but also maintain the mechanical properties and thermal stability of the ordinary PI film. Any residual quinoline could be removed from PI films by heating at 250 ℃ for 4 h.展开更多
Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic co...Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic composite coatings were prepared on the surface of 304 stainless steel using a simple one-step spraying method.The effects of different PS contents on the wettability as well as the wear properties of the samples were investigated.SiO_(2) was encapsulated in polystyrene to form a structure similar to cement encapsulated stones.With the addition of PS,a mound-like structure was formed on the sample surface,and a more optimized micro–nano structure was obtained when the content of PS was 0.6 g.At this time,the sample exhibited excellent wettability with a contact angle of 157.86°and a sliding angle of 0.84°.In addition,the contact angle of 151.09°was achieved after 180 cm of friction under a 100 g load and the composite coating prepared by this method also has excellent chemical stability,water impact resistance,corrosion resistance,and self-cleaning properties.This opens up new possibilities for the development of simple and robust superhydrophobic materials.展开更多
Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and...Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood so far. In this study, the sulfate attack of cement paste incorporating 30% mass of limestone powder was investigated. After 20 ℃ water cured for 7, 14, and 28 days,respectively, 20 mm cube specimens were exposed in a 5% magnesium sulfate solution at(6 ±1) ℃ for periods up to 240 days. Their appearance change, compressive strength development were examined at different storage time, and selected paste samples were examined by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results indicate that all Portland-limstone cement pastes suffer from appearance deterioration to some extent. The compressive strength of cement paste initially increases and after 120 days decreases with increasing exposed period. In addition, the cement paste with short curing time is more susceptible to sulfate attack, which directly leads to the formation of non-binder thaumasite crystal accompanied by the formation of ettringite, gypsum and brucite, and becomes a white, mushy, and incohesive matrix. Additionally, the extent of sulfate attack is greater and the formation of thaumasite is observed earlier for shorter curing time.展开更多
基金supported by the National Key Research and Development Program (2016YFC0205900)the National Natural Science Foundation of China (21503106, 21567016)+1 种基金the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province (20142BAB213013 and 20151BBE50006)~~
文摘Catalytic oxidation of formaldehyde (HCHO) is the most efficient way to purify indoor air of HCHO pollutant. This work investigated rare earth La‐doped Pt/TiO2 for low concentration HCHO oxidation at room temperature. La‐doped Pt/TiO2 had a dramatically promoted catalytic performance for HCHO oxidation. The reasons for the La promotion effect were investigated by N2 adsorption, X‐raydiffraction, CO chemisorption, X‐ray photoelectron spectroscopy, transmission electron microscopy(TEM) and high‐angle annular dark field scanning TEM. The Pt nanoparticle size was reduced to 1.7nm from 2.2 nm after modification by La, which led to higher Pt dispersion, more exposed activesites and enhanced metal‐support interaction. Thus a superior activity for indoor low concentrationHCHO oxidation was obtained. Moreover, the La‐doped TiO2 can be wash‐coated on a cordieritemonolith so that very low amounts of Pt (0.01 wt%) can be used. The catalyst was evaluated in asimulated indoor HCHO elimination environment and displayed high purifying efficiency and stability.It can be potentially used as a commercial catalyst for indoor HCHO elimination.
文摘This study aims to determine the most convenient calcination temperature and calcination duration of wastestabilized Adobe(AB)to produce a new alkali-activated binder.Waste-stabilized Adobe mainly consists of soil,CaCO3 as a stabilizer,and straw(for strengthening).The availability of raw materials for making Adobe presents the waste-stabilized Adobe as a potential product for a new alkali-activated binder.Waste-stabilized Adobe collected from an abandoned damaged building in the village of Inonu in Northern Cyprus,ground and calcined at the following temperatures:450,550,650,750,850,and 950℃.The calcination at each temperature was held for different durations 1,3,5,and 7 h.Raw and calcined waste stabilized Adobe structures were investigated using XRF,TGA-DTA,XRD,FTIR,and SEM.Considering technical and environmental views related to energy consumption,waste stabilized Adobe calcined at 750℃ for 1 h presented the most promising results regarding the production of a new precursor for alkali-activated binder.This study also presents the effect of ground granulated blast furnace slag(GGBFS)usage on the fresh and hardened properties of optimum calcined AB-based alkali-activated pastes cured at room temperature.GGBFS was used to partially replace AB to form a binary composite raw material system and seven experimental groups were designed according to replacement levels of 0%,5%,10%,15%,20%,25%and 30%(by mass).Alkali-activated high volume waste-stabilized Adobe-slag pastes prepared using Na2SiO3-to-NaOH ratio of 2 and 12 M concentration of Sodium Hydroxide.The fresh property as flowability and the hardened property as the compressive strength of the alkali-activated pastes with different GGBFS contents were investigated.The results indicated that the incorporation of GGBFS increased the flowability of fresh alkali-activated pastes.A 28-day compressive strength of 43.75 MPa can be obtained by a 30%replacement level of GGBFS.
文摘Allyl terminated polyether was used to improve the hydrophilicity of addition-cured room temperature vulcanization silicone rubber. With the increasing of the polyether, both the hydrophilicity and water absorbed of the vulcanizates were increased. The mechanical properties were also improved by adding the polyether. The result showed that 1.5wt% of the polyether provided the silicone rubber with proper hydrophilicity.
基金Supported by China National Tobacco Corporation(Yunnan Tobacco Science and Technology Program No.[2014]302,program contract number:2014YN22)
文摘There is a prominent,complex and diverse three-dimensional climate and a variety of meteorological disasters in Qujing area. The risk zoning of low-temperature disasters for flue-cured tobacco planting in Qujing area was studied to provide reference for drawing on advantages and avoiding disadvantages in flue-cured tobacco planting,disaster reduction,and disaster relief services. According to the production practice of fluecured tobacco and local climate analysis,it was determined that flue-cured tobacco in Qujing area was very vulnerable to low temperature during the seedling stage( from early February to middle April) and in the mature period( from early July to early September). Based on the quantitative analysis and evaluation of risk of disaster-causing factors,sensitivity of disaster-breeding environment,vulnerability of carriers,and disaster prevention and reduction capability,a risk assessment model of meteorological disasters was established to precisely evaluate and zone the risk of low-temperature disasters for flue-cured tobacco planting in allusion to the seedling and mature stage in Qujing area by using GIS technology. The risk of lowtemperature disasters for flue-cured tobacco planting during the two periods was divided into four grades,namely low,medium,high and very high risk.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 19934003)the Grand Program of Natural Science Research of Anhui Education Department (No. ZD2007003-1)the Natural Science Research Program of Universities and Colleges of Anhui Province, China (Nos. KJ2008A19ZC, KJ2009B281Z, and KJ2009A053Z)
文摘La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2 (x = 0.00, 0.04, 0.08, 0.25, 0.30) samples were prepared by the solid-state reaction method, and their transport behaviors, transport mechanism, and magnetoresistance effect were studied through the measurement and fitting of p-T curves. The results show that the element Ag takes part in reaction when the doping amount is small. Ag is mainly distributed at the grain boundary of the host material and is in metallic state when the doping amount is relatively large; then the system becomes a two-phase composite. A small amount of Ag doping can apparently increase grain-boundary magnetoresistance induced by the spin-dependent scattering. The resistivity of the sample doped with 30 mol% Ag is one order of magnitude smaller than that of low-doped samples, and its magnetoresistance in the magnetic field of 0.5 T and at 300 K is strengthened apparently reaching 9.4%, which is connected not only with the improvement of the grain-boundary structure of the host material but also with the decrease of material resistivity.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 19934003)the Grand Program of Natural Science Research of Anhui Education Department (No. ZD2007003-1)+1 种基金the Natural Science Research Program of Universities and Colleges of Anhui Province, China (No. KJ2008A34ZC No. KJ2009A053Z)
文摘The samples of La0.6Dy0.1Sr0.3MnO3/(Ag2O)x/2(x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, 0.25, and 0.30) were prepared by using the solid-state reaction method.Their magnetic property, transport behavior, transport mechanism and magnetoresistance effect were studied through the measurements of magnetization-temperature(M-T) curves, ρ-T curves and the fitting of ρ-T curves.The results indicated that Ag could take part in the reaction when the doping amount is small.However, when the doping amount is comparatively large, Ag as metallic state mainly deposits on the grain boundary of La0.6Dy0.1Sr0.3MnO3, and then the system forms a two-phase composite.When the Ag doping amount is 30% mole ratio, the resistivity of the sample is one order of magnitude smaller than that of low doped samples, and its peak of magnetoresistance at 292 K and in the magnetic field of 0.2 T strengthens apparently and reaches 16.3%, which is over 7 times as large as 2.2% of La0.6Dy0.1Sr0.3MnO3.The two-phase composite system of magnetoresistance based on perovskite manganite consists of two parts:intrinsic magnetoresistance and extrinsic magnetoresistance.However, extrinsic magnetoresistance comes from spin-dependent scattering(SDS) and spin-polarized tunneling(SPT).Magnetoresistance near TC increases due to the contribution of intrinsic magnetoresistance and extrinsic magnetoresistance formed by SDS, and magnetoresistance at low temperature is extrinsic magnetoresistance formed by SPT.
文摘In order to lower the imidization temperature of polyamic acids(PAA), the catalytic activities of the curing agents p-hydroxybenzoic acid(PHA), quinoline(QL), benzimidazole(BI), benzotriazole(BTA), triethylamine(Et_3N) and 1, 8-diazabicyclo [5.4.0]undec-7-ene(DBU) were investigated in the process of thermal imidization of PAA. In addition, the effect of these various curing agents on the thermal stabilities and mechanical properties of the resultant polyimide(PI) films was determined. Quinoline was found to be an effective curing accelerator in the use of two-step method for synthesizing PI. Due to its moderate base strength, low steric crowding effect and moderate boiling point, quinoline could not only accelerate PAA to achieve imidization completely at 180 ℃, but also maintain the mechanical properties and thermal stability of the ordinary PI film. Any residual quinoline could be removed from PI films by heating at 250 ℃ for 4 h.
基金This study was supported by the National Natural Science Foundation of China(Grant Number 52172090 and 52071159).
文摘Superhydrophobic materials are severely limited in their applications due to their weak mechanical properties and complex preparation process.In this paper,polystyrene/fluorinated silica(PS/SiO_(2))superhydrophobic composite coatings were prepared on the surface of 304 stainless steel using a simple one-step spraying method.The effects of different PS contents on the wettability as well as the wear properties of the samples were investigated.SiO_(2) was encapsulated in polystyrene to form a structure similar to cement encapsulated stones.With the addition of PS,a mound-like structure was formed on the sample surface,and a more optimized micro–nano structure was obtained when the content of PS was 0.6 g.At this time,the sample exhibited excellent wettability with a contact angle of 157.86°and a sliding angle of 0.84°.In addition,the contact angle of 151.09°was achieved after 180 cm of friction under a 100 g load and the composite coating prepared by this method also has excellent chemical stability,water impact resistance,corrosion resistance,and self-cleaning properties.This opens up new possibilities for the development of simple and robust superhydrophobic materials.
基金Funded by National Natural Science Foundation of China(No.51378499)China Railway Corporation(No.2014G004-R)Science and Technology of China(No.2010G004-E)
文摘Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack(TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood so far. In this study, the sulfate attack of cement paste incorporating 30% mass of limestone powder was investigated. After 20 ℃ water cured for 7, 14, and 28 days,respectively, 20 mm cube specimens were exposed in a 5% magnesium sulfate solution at(6 ±1) ℃ for periods up to 240 days. Their appearance change, compressive strength development were examined at different storage time, and selected paste samples were examined by X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results indicate that all Portland-limstone cement pastes suffer from appearance deterioration to some extent. The compressive strength of cement paste initially increases and after 120 days decreases with increasing exposed period. In addition, the cement paste with short curing time is more susceptible to sulfate attack, which directly leads to the formation of non-binder thaumasite crystal accompanied by the formation of ettringite, gypsum and brucite, and becomes a white, mushy, and incohesive matrix. Additionally, the extent of sulfate attack is greater and the formation of thaumasite is observed earlier for shorter curing time.