Non equiripple approximation of filter characteristics can be realized either odd order or even order in the symmetric load case.This paper presents a method of synthesizing non equiripple low pass filter based on ...Non equiripple approximation of filter characteristics can be realized either odd order or even order in the symmetric load case.This paper presents a method of synthesizing non equiripple low pass filter based on iteration analysis,in which the rational fraction formed of Chebyshev polynomial is used as the filter characteristic function.This method is convenient for computer programming,because the attenuation zeros and poles of the filter can be determined easily and the synthesis procedure is simple,too.The given examples show that the method is of a practical value in filter design.展开更多
This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invar...This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.展开更多
This paper presents a novel low-pass filter (LPF) with sharp rejection, wide stopband and compact size, which are realized by the defected ground structure (DGS) and the defected microstrip structure (DMS). The ...This paper presents a novel low-pass filter (LPF) with sharp rejection, wide stopband and compact size, which are realized by the defected ground structure (DGS) and the defected microstrip structure (DMS). The equivalent circuit model is proposed and the circuit parameters are extracted by the circuit simulation software. The parameters measured are 3 dB cutoff frequency fc of 5.2 GHz, the insertion loss less than 0.5 dB from DC to 4.0 GHz and S21 less than -20 dB within the wide stopband from 6 GHz to 16 GHz. The results of the circuit optimization agree well with those of the full wave simulation and the measured ones, which validate the effectiveness of the equivalent circuit model. The size of the proposed LPF is decreased compared with normal LPF. This LPF can be applied in rectennas to eliminate high order harmonics.展开更多
A new technique using signal flow graph for conversion of ladder based filter into CFOA based filter has been proposed. The proposed technique converts the existing LC ladder based filter into CFOA in low pass and hig...A new technique using signal flow graph for conversion of ladder based filter into CFOA based filter has been proposed. The proposed technique converts the existing LC ladder based filter into CFOA in low pass and high pass configuration. The design of low pass filter and high pass filter has been realized using the proposed technique. The proposed configuration is implemented using CFOA as an active device and all the capacitors are grounded. Simulation has been carried out using simulation software I-cap. The simulation results have been demonstrated and discussed.展开更多
The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation abov...The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.展开更多
A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped D...A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped DGS. Selectivity is improved by 97.2% with a sharpness factor of 24.6%. The method is applied to the design of a low-pass filter to confirm validity of the proposed DGS.展开更多
An effective technique to design compact low pass filter has been proposed in this paper. The proposed method is highly effective for L-band applications. Low impedance microstrip lines are arranged such that they wor...An effective technique to design compact low pass filter has been proposed in this paper. The proposed method is highly effective for L-band applications. Low impedance microstrip lines are arranged such that they work as open stubs to increase the selectivity of the filter. Using the proposed technique about 57% size reduction has been realized with sharper roll off characteristics. An empirical expression is derived to determine the dimension of resonators. For cut-off frequency of 1.7 GHz the investigated method has been fabricated and tested. There is a close agreement be-tween simulated and measured展开更多
In this paper the design and implementation of sixth-order lowpass elliptic switched-capacitor filter( SCF) for interface circuit of Micro-Electro-Mechanical System( MEMS) sensor are presented. This work aims to lower...In this paper the design and implementation of sixth-order lowpass elliptic switched-capacitor filter( SCF) for interface circuit of Micro-Electro-Mechanical System( MEMS) sensor are presented. This work aims to lower total harmonic distortion( THD) without deteriorating other performances. After system design in Simulink,the filter is realized in transistor level and finally fabricated in Central Semiconductor Manufacturing Corporation( CSMC) 0.5 μm metal-oxide-semiconductor( CMOS) technology. Typical measured results are: it operates with 25: 1 clock-to-corner frequency ratio and a 10 k Hz maximum corner frequency. The maximum passband ripple is about 0.49 d B and the minimum stopband rejection is 40 d B for the temperature from-20 ℃to 80 ℃. For the 250 k Hz clock frequency setting,given the 1 k Hz,- 8 d BVrms input signal,the measured worst case THD is-64 d B. The active area of the chip is 2.8 mm2 with 8 pads. The analog power dissipation is10 m W from a 5 V power supply.展开更多
Complimentary hexagonal-omega structures are used to design compact, low insertion loss (IL), low pass filter with sharp cut-off. It has been designed for improvement of roll-off performance based on both μ and ε ne...Complimentary hexagonal-omega structures are used to design compact, low insertion loss (IL), low pass filter with sharp cut-off. It has been designed for improvement of roll-off performance based on both μ and ε negative property of the complimentary hex-omega structure while maintaining the filter pass-band performance. By properly designing and loading the hexagonal-omega structure in the ground of microstrip line not only improve the roll-off of the low pass filter, but also reduced the filter size. The simulated results indicate that the proposed filter achieves a flat pass band with no ripples as well as selectivity of 19.68 dB/GHz, corresponding to 5-unit cells hex-omega structures. This significantly exceeds the 5.6 dB/GHz selectivity of the conventional low pass filter design, due to sub-lambda dimensions of the hex-omega structure. A prototype filter implementing area is: 0.712λg x 0.263λg, λg being the guided wavelength at 3-dB cut-off frequency (fc). The proposed filter has a size smaller by 36.2%.展开更多
It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be empl...It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be employed. In this approach, it is assumed both fine model and coarse, fast but inaccurate, one are available. First, the coarse model is optimized to obtain design parameters satisfying design objectives. Next, auxiliary parameters are calibrated to match coarse and fine models’ responses. Then, the improved coarse model is re-optimized to obtain new design parameters. The design procedure is stopped when a satisfactory solution is reached. In this paper, an implicit space mapping method is used to design a microstrip low-pass elliptic filter. Simulation results show that only two fine model evaluations are sufficient to get satisfactory results.展开更多
Digital filters play a key role in the field of digital signal processing. This paper presents a linear phase digital low pass finite impulse response (FIR) filter design using particle swarm optimization and its two ...Digital filters play a key role in the field of digital signal processing. This paper presents a linear phase digital low pass finite impulse response (FIR) filter design using particle swarm optimization and its two new variants, dynamic and adjustable particle swarm optimization (DAPSO) and particle swarm optimization with variable acceleration factor (PSO-VAF) and illustrates the superiority of the PSO-VAF method over PSO based methods. Two fitness functions are considered. The fitness1 is used to find the possible minimum ripples in pass band and stop band in case of PSO, DAPSO and PSO-VAF. Fitness2 is able to control the ripples in both bands separately. A comparison of simulation results demonstrates the performance of PSO and its methods in designing digital low pass FIR filters.展开更多
In this paper the low pass filter is discussed in the noisy case. And a regularized low pass filter is presented. The convergence property of the regularized low pass filtering algorithm is proved in theory and tested...In this paper the low pass filter is discussed in the noisy case. And a regularized low pass filter is presented. The convergence property of the regularized low pass filtering algorithm is proved in theory and tested by numerical results.展开更多
A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation...A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation and source degeneration techniques. The attenuation technique is implemented by bulk driven cell which is used for low supply voltage circuits. The OTA is designed to operate with a 0.9 V supply voltage and consumes 58.8 μW power. A 600 mVppd sine wave input signal at 1 MHz frequency shows total harmonic distortion (THD) better than -40 dB over the tuning range of the transconductance. The OTA has been used to realize a tunable Gm-C low-pass filter with gain tuning from 5 dB to 21 dB with 4 dB gain steps, which results in power consumptions of 411.6 to 646.8 μW. This low voltage filter can operate as channel select filter and variable gain amplifier (VGA) for wireless sensor network (WSN) applications. The proposed OTA and filter have been simulated in 0.18 μm CMOS technology. Corner case and temperature simulation results are also included to forecast process and temperature variation affects after fabrication.展开更多
Modern electronic circuit requires compact,multifunctional technology in communication systems.However,it is very difficult due to the limitations in passive component miniaturization and the complication of fabricati...Modern electronic circuit requires compact,multifunctional technology in communication systems.However,it is very difficult due to the limitations in passive component miniaturization and the complication of fabrication process.The bandpass filter is one of the most important passive components in millimeter(mm)-wave communication system,attracting significant interest in three-dimension(3D) miniaturized design,which is few reported.In this paper,a bandpass filter structure using low-temperature co-fired ceramic(LTCC) technology,which is fully integrated in a system-in package(SIP) communication module,is presented for miniaturized and high reliable mm-wave application.The bandpass filter with 3D end-coupled microstrip resonators is implemented in order to achieve a high performance bandwidth characteristic.Specifically,all of the resonators are embedded into different ceramic layers to decrease the insertion loss and enhance the out-of-band rejection performance by optimizing the coupling coefficient and the coupling strength.A fence structure,which is formed by metal-filled via array with the gap less than quarter wavelength,is placed around the embedded bandpass filter to avoid electromagnetic(EM) interference problem in multilayer structure.This structural model is validated through actual LTCC process.The bandpass filter is successfully manufactured by modifying the co-fireablity characteristics,adjusting the sintering profile,releasing the interfacial stress,and reducing the shrinkage mismatch with different materials.Measured results show good performance and agree well with the high frequency EM full wave simulation.The influence of layer thickness and dielectric constant on the frequency response in fabricated process is analyzed,where thicker ceramic sheets let the filter response shift to higher frequency.Moreover,measured S-parameters denote the center frequency is also strongly influenced by the variation of ceramic material's dielectric constants.By analyzing the relationship between the characteristics of the ceramic tape and the center frequency of the filter,both theoretical and experimental data are accumulated for broadening application filed.With the coupling resonators embedded into the ceramic layers,the bandpass filter exhibits advantages of small size and high reliability compared to conventional planar filter structure,which makes the bandpass filter suitable for SIP communicational application.展开更多
Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom ...Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom hardware implementation of composite field S-Box is proposed for these targeted domains in this paper. The minimization of power consumption is implemented by optimizing the architecture of the composite field S-Box and using the pass transmission gate (PTG) to realize the logic functions of S-Box. Power simulations were performed using the netlist extracted from the layout. HSPICE simulation results indicated that the proposed S-Box achieves low power consumption of about 130 μW at 10 MHz using 0.25 μm/2.5 V technology, while the consumptions of the positive polarity reed-muller (PPRM) based S-Box and composite field S-Box based on the conventional CMOS logic style are about 240 μW and 420 μW, respectively. The simulations also showed that the presented S-Box obtains better low-voltage operating property, which is clearly relevant for applications like sensor nodes, smart cards and radio frequency identification (RFID) tags.展开更多
We experimentally demonstrate an electrically triggered terahertz(THz) dual-band tunable band-pass filter based on Si_3 N_4–VO_2–Si_3 N_4 sandwich-structured hybrid metamaterials. The insulator–metal phase transiti...We experimentally demonstrate an electrically triggered terahertz(THz) dual-band tunable band-pass filter based on Si_3 N_4–VO_2–Si_3 N_4 sandwich-structured hybrid metamaterials. The insulator–metal phase transition of VO_2 film is induced by the Joule thermal effect of the top metal layer. The finite-integration-time-domain(FITD) method and finite element method(FEM) are used for numerical simulations. The sample is fabricated using a surface micromachining process,and characterized by a THz time-domain-spectrometer(TDS). When the bias current is 0.225 A, the intensity modulation depths at two central frequencies of 0.56 THz and 0.91 THz are about 81.7% and 81.3%, respectively. This novel design can achieve dynamically electric–thermo–optic modulation in the THz region, and has potential applications in the fields of THz communications, imaging, sensing, and astronomy exploration.展开更多
Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military appli- cations, in which the detection of weak UV signal against a strong background of solar radiatio...Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military appli- cations, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of "transparent metal". The filter consisting of Al/SiO2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period.展开更多
In this paper a novel log-domain current-mode integrator based on MOS transistors in subthreshold is proposed. The integrator's time-constant is tunable by varying a reference bias current. By use of the integrato...In this paper a novel log-domain current-mode integrator based on MOS transistors in subthreshold is proposed. The integrator's time-constant is tunable by varying a reference bias current. By use of the integrator, a fifth-order Chebyshev lowpass filter with 0.1dB ripples is designed. The simulation results demonstrate that the proposed filter has such advantages as low power supply(1.5V), very low power dissipation (μW level), nearly ideal frequency response, very small sensitivity to components in passband, and adjustable cut-off frequency over a wide range.The circuit is composed of NMOS transistors and grounded capacitors which make it suitable for fully integrated circuit implementation.展开更多
The filter proposed in this paper is expected to reduce noise whose frequency is lower than higher order harmonics of real signals.It is based on the distributive characteristics of noise,and uses analog circuits to s...The filter proposed in this paper is expected to reduce noise whose frequency is lower than higher order harmonics of real signals.It is based on the distributive characteristics of noise,and uses analog circuits to select the high peak and low peak of the input signal and applies their average in order to reduce random noise.So it has no cutoff frequency and higher order harmonics of real signals are remained.As a result,it gives an instant response to changes in input signals and retains the integrity of real signals.Furthermore,it has only a small phase delay.The simulation results of slew rate,phase delay and spectral analysis under MULTISIM indicate that the quick response noise filter achieves a high slew rate of 472 V/ms and the phase shift is nearly zero.By having it used in a color tester design,it is also demonstrated that the proposed filter effectively reduces noise and remains signal integrity.With the filter 's help,the relative standard deviation of the spectrograph decreases from 1% to 0.22%,indicating better stability.展开更多
文摘Non equiripple approximation of filter characteristics can be realized either odd order or even order in the symmetric load case.This paper presents a method of synthesizing non equiripple low pass filter based on iteration analysis,in which the rational fraction formed of Chebyshev polynomial is used as the filter characteristic function.This method is convenient for computer programming,because the attenuation zeros and poles of the filter can be determined easily and the synthesis procedure is simple,too.The given examples show that the method is of a practical value in filter design.
基金supported by the National Natural Science Foundation of China(61550110248)
文摘This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.
文摘This paper presents a novel low-pass filter (LPF) with sharp rejection, wide stopband and compact size, which are realized by the defected ground structure (DGS) and the defected microstrip structure (DMS). The equivalent circuit model is proposed and the circuit parameters are extracted by the circuit simulation software. The parameters measured are 3 dB cutoff frequency fc of 5.2 GHz, the insertion loss less than 0.5 dB from DC to 4.0 GHz and S21 less than -20 dB within the wide stopband from 6 GHz to 16 GHz. The results of the circuit optimization agree well with those of the full wave simulation and the measured ones, which validate the effectiveness of the equivalent circuit model. The size of the proposed LPF is decreased compared with normal LPF. This LPF can be applied in rectennas to eliminate high order harmonics.
文摘A new technique using signal flow graph for conversion of ladder based filter into CFOA based filter has been proposed. The proposed technique converts the existing LC ladder based filter into CFOA in low pass and high pass configuration. The design of low pass filter and high pass filter has been realized using the proposed technique. The proposed configuration is implemented using CFOA as an active device and all the capacitors are grounded. Simulation has been carried out using simulation software I-cap. The simulation results have been demonstrated and discussed.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60425102.
文摘The implementation and characteristics of a compact lumped-element three-order low pass filter are presented in this paper. The filter with 120 MHz cut off frequency, as well as more than 20 dB of the attenuation above 360 MHz frequency band is successfully manufactured in an LTCC substrate with 40 pm layer thickness. The overall size of the filter is 2.0 mm×1.2 mm×0.9 mm. A good coincidence between the measured results and the full-wave electromagnetic designed responses is observed.
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.T0102)
文摘A novel defected ground structure (DGS) for the microstrip line is proposed in this paper. The DGS lattice has more defect parameters so that it can provide better performance than the conventional dumbbell-shaped DGS. Selectivity is improved by 97.2% with a sharpness factor of 24.6%. The method is applied to the design of a low-pass filter to confirm validity of the proposed DGS.
文摘An effective technique to design compact low pass filter has been proposed in this paper. The proposed method is highly effective for L-band applications. Low impedance microstrip lines are arranged such that they work as open stubs to increase the selectivity of the filter. Using the proposed technique about 57% size reduction has been realized with sharper roll off characteristics. An empirical expression is derived to determine the dimension of resonators. For cut-off frequency of 1.7 GHz the investigated method has been fabricated and tested. There is a close agreement be-tween simulated and measured
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2013040)
文摘In this paper the design and implementation of sixth-order lowpass elliptic switched-capacitor filter( SCF) for interface circuit of Micro-Electro-Mechanical System( MEMS) sensor are presented. This work aims to lower total harmonic distortion( THD) without deteriorating other performances. After system design in Simulink,the filter is realized in transistor level and finally fabricated in Central Semiconductor Manufacturing Corporation( CSMC) 0.5 μm metal-oxide-semiconductor( CMOS) technology. Typical measured results are: it operates with 25: 1 clock-to-corner frequency ratio and a 10 k Hz maximum corner frequency. The maximum passband ripple is about 0.49 d B and the minimum stopband rejection is 40 d B for the temperature from-20 ℃to 80 ℃. For the 250 k Hz clock frequency setting,given the 1 k Hz,- 8 d BVrms input signal,the measured worst case THD is-64 d B. The active area of the chip is 2.8 mm2 with 8 pads. The analog power dissipation is10 m W from a 5 V power supply.
文摘Complimentary hexagonal-omega structures are used to design compact, low insertion loss (IL), low pass filter with sharp cut-off. It has been designed for improvement of roll-off performance based on both μ and ε negative property of the complimentary hex-omega structure while maintaining the filter pass-band performance. By properly designing and loading the hexagonal-omega structure in the ground of microstrip line not only improve the roll-off of the low pass filter, but also reduced the filter size. The simulated results indicate that the proposed filter achieves a flat pass band with no ripples as well as selectivity of 19.68 dB/GHz, corresponding to 5-unit cells hex-omega structures. This significantly exceeds the 5.6 dB/GHz selectivity of the conventional low pass filter design, due to sub-lambda dimensions of the hex-omega structure. A prototype filter implementing area is: 0.712λg x 0.263λg, λg being the guided wavelength at 3-dB cut-off frequency (fc). The proposed filter has a size smaller by 36.2%.
文摘It is a time-consuming and often iterative procedure to determine design parameters based on fine, accurate but expensive, models. To decrease the number of fine model evaluations, space mapping techniques may be employed. In this approach, it is assumed both fine model and coarse, fast but inaccurate, one are available. First, the coarse model is optimized to obtain design parameters satisfying design objectives. Next, auxiliary parameters are calibrated to match coarse and fine models’ responses. Then, the improved coarse model is re-optimized to obtain new design parameters. The design procedure is stopped when a satisfactory solution is reached. In this paper, an implicit space mapping method is used to design a microstrip low-pass elliptic filter. Simulation results show that only two fine model evaluations are sufficient to get satisfactory results.
文摘Digital filters play a key role in the field of digital signal processing. This paper presents a linear phase digital low pass finite impulse response (FIR) filter design using particle swarm optimization and its two new variants, dynamic and adjustable particle swarm optimization (DAPSO) and particle swarm optimization with variable acceleration factor (PSO-VAF) and illustrates the superiority of the PSO-VAF method over PSO based methods. Two fitness functions are considered. The fitness1 is used to find the possible minimum ripples in pass band and stop band in case of PSO, DAPSO and PSO-VAF. Fitness2 is able to control the ripples in both bands separately. A comparison of simulation results demonstrates the performance of PSO and its methods in designing digital low pass FIR filters.
文摘In this paper the low pass filter is discussed in the noisy case. And a regularized low pass filter is presented. The convergence property of the regularized low pass filtering algorithm is proved in theory and tested by numerical results.
文摘A low voltage low power operational transconductance amplifier (OTA) based on a bulk driven cell and its application to implement a tunable Gm-C filter is presented. The linearity of the OTA is improved by attenuation and source degeneration techniques. The attenuation technique is implemented by bulk driven cell which is used for low supply voltage circuits. The OTA is designed to operate with a 0.9 V supply voltage and consumes 58.8 μW power. A 600 mVppd sine wave input signal at 1 MHz frequency shows total harmonic distortion (THD) better than -40 dB over the tuning range of the transconductance. The OTA has been used to realize a tunable Gm-C low-pass filter with gain tuning from 5 dB to 21 dB with 4 dB gain steps, which results in power consumptions of 411.6 to 646.8 μW. This low voltage filter can operate as channel select filter and variable gain amplifier (VGA) for wireless sensor network (WSN) applications. The proposed OTA and filter have been simulated in 0.18 μm CMOS technology. Corner case and temperature simulation results are also included to forecast process and temperature variation affects after fabrication.
基金supported by Research Fund for the Doctoral Program of Higher Education of China(Grant No.20060614021)Sichuan Provincial Fundamental Research of China(Grant No.2008JY0057),Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2009J091)
文摘Modern electronic circuit requires compact,multifunctional technology in communication systems.However,it is very difficult due to the limitations in passive component miniaturization and the complication of fabrication process.The bandpass filter is one of the most important passive components in millimeter(mm)-wave communication system,attracting significant interest in three-dimension(3D) miniaturized design,which is few reported.In this paper,a bandpass filter structure using low-temperature co-fired ceramic(LTCC) technology,which is fully integrated in a system-in package(SIP) communication module,is presented for miniaturized and high reliable mm-wave application.The bandpass filter with 3D end-coupled microstrip resonators is implemented in order to achieve a high performance bandwidth characteristic.Specifically,all of the resonators are embedded into different ceramic layers to decrease the insertion loss and enhance the out-of-band rejection performance by optimizing the coupling coefficient and the coupling strength.A fence structure,which is formed by metal-filled via array with the gap less than quarter wavelength,is placed around the embedded bandpass filter to avoid electromagnetic(EM) interference problem in multilayer structure.This structural model is validated through actual LTCC process.The bandpass filter is successfully manufactured by modifying the co-fireablity characteristics,adjusting the sintering profile,releasing the interfacial stress,and reducing the shrinkage mismatch with different materials.Measured results show good performance and agree well with the high frequency EM full wave simulation.The influence of layer thickness and dielectric constant on the frequency response in fabricated process is analyzed,where thicker ceramic sheets let the filter response shift to higher frequency.Moreover,measured S-parameters denote the center frequency is also strongly influenced by the variation of ceramic material's dielectric constants.By analyzing the relationship between the characteristics of the ceramic tape and the center frequency of the filter,both theoretical and experimental data are accumulated for broadening application filed.With the coupling resonators embedded into the ceramic layers,the bandpass filter exhibits advantages of small size and high reliability compared to conventional planar filter structure,which makes the bandpass filter suitable for SIP communicational application.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA01Z226)the Scientific Research Foundation of Huazhong University of Science and Technol-ogy (No. 2006Z001B), China
文摘Using composite field arithmetic in Galois field can result in the compact Rijndael S-Box. However, the power con- sumption of this solution is too large to be used in resource-limited embedded systems. A full-custom hardware implementation of composite field S-Box is proposed for these targeted domains in this paper. The minimization of power consumption is implemented by optimizing the architecture of the composite field S-Box and using the pass transmission gate (PTG) to realize the logic functions of S-Box. Power simulations were performed using the netlist extracted from the layout. HSPICE simulation results indicated that the proposed S-Box achieves low power consumption of about 130 μW at 10 MHz using 0.25 μm/2.5 V technology, while the consumptions of the positive polarity reed-muller (PPRM) based S-Box and composite field S-Box based on the conventional CMOS logic style are about 240 μW and 420 μW, respectively. The simulations also showed that the presented S-Box obtains better low-voltage operating property, which is clearly relevant for applications like sensor nodes, smart cards and radio frequency identification (RFID) tags.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574059,61565004,and 11774288)the National Technology Major Special Project,China(Grant No.2017ZX02101007-003)+2 种基金the Natural Science Foundation of Guangxi,China(Grant Nos.2015GXNSFDA139039 and2017GXNSFBA198116)the Foundation from Guangxi Key Laboratory of Automatic Detection Technology and Instrument,China(Grant No.YQ16101)the Innovation of Guangxi Graduate Education,China(Grant Nos.2018YJCX70,2018YJCX67,and 2018YJCX74)
文摘We experimentally demonstrate an electrically triggered terahertz(THz) dual-band tunable band-pass filter based on Si_3 N_4–VO_2–Si_3 N_4 sandwich-structured hybrid metamaterials. The insulator–metal phase transition of VO_2 film is induced by the Joule thermal effect of the top metal layer. The finite-integration-time-domain(FITD) method and finite element method(FEM) are used for numerical simulations. The sample is fabricated using a surface micromachining process,and characterized by a THz time-domain-spectrometer(TDS). When the bias current is 0.225 A, the intensity modulation depths at two central frequencies of 0.56 THz and 0.91 THz are about 81.7% and 81.3%, respectively. This novel design can achieve dynamically electric–thermo–optic modulation in the THz region, and has potential applications in the fields of THz communications, imaging, sensing, and astronomy exploration.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB327504,2011CB922100,and 2011CB301900)the National NaturalScience Foundation of China(Grant Nos.60936004 and 11104130)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2011556 andBK2011050)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Solar-blind ultraviolet (UV) band-pass filter has significant value in many scientific, commercial, and military appli- cations, in which the detection of weak UV signal against a strong background of solar radiation is required. In this work, a solar-blind filter is designed based on the concept of "transparent metal". The filter consisting of Al/SiO2 multilayers could exhibit a high transmission in the solar-blind wavelength region and a wide stopband extending from near-ultraviolet to infrared wavelength range. The central wavelength, bandwidth, Q factor, and rejection ratio of the passband are numerically studied as a function of individual layer thickness and multilayer period.
文摘In this paper a novel log-domain current-mode integrator based on MOS transistors in subthreshold is proposed. The integrator's time-constant is tunable by varying a reference bias current. By use of the integrator, a fifth-order Chebyshev lowpass filter with 0.1dB ripples is designed. The simulation results demonstrate that the proposed filter has such advantages as low power supply(1.5V), very low power dissipation (μW level), nearly ideal frequency response, very small sensitivity to components in passband, and adjustable cut-off frequency over a wide range.The circuit is composed of NMOS transistors and grounded capacitors which make it suitable for fully integrated circuit implementation.
基金Sponsored by the National High Technology Research and Development Program(Grant No.863-2-5-1-13B)
文摘The filter proposed in this paper is expected to reduce noise whose frequency is lower than higher order harmonics of real signals.It is based on the distributive characteristics of noise,and uses analog circuits to select the high peak and low peak of the input signal and applies their average in order to reduce random noise.So it has no cutoff frequency and higher order harmonics of real signals are remained.As a result,it gives an instant response to changes in input signals and retains the integrity of real signals.Furthermore,it has only a small phase delay.The simulation results of slew rate,phase delay and spectral analysis under MULTISIM indicate that the quick response noise filter achieves a high slew rate of 472 V/ms and the phase shift is nearly zero.By having it used in a color tester design,it is also demonstrated that the proposed filter effectively reduces noise and remains signal integrity.With the filter 's help,the relative standard deviation of the spectrograph decreases from 1% to 0.22%,indicating better stability.