With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studi...With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studies of the low yield point steel is mainly about the performance with constant amplitude and constant frequency.The low cycle fatigue properties of low yield piont steel were studied by series of test with continuous varying amplitude and varying frequency with the materials testing system by us.The test results showed that low yield point steel of Baosteel have excellent low cycle fatigue properties,which meet the requirement for steel used for the fabrication of energy dissipation damper completely.The low cycle fatigue performance of low yield point steel of Baosteel mainly depended on the amplitude in test.And the effect of varying frequency for the low yield point steel was more less than varying amplitude.展开更多
Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher pr...Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.展开更多
Low-carbon steel is widely used for household appliance and automotive panel steel because of its excellent plasticity.Unfortunately,yield point phenomena easily appear in the low-carbon steel produced by a continuous...Low-carbon steel is widely used for household appliance and automotive panel steel because of its excellent plasticity.Unfortunately,yield point phenomena easily appear in the low-carbon steel produced by a continuous annealing process and cause degradation to the surface quality during processing.The effect of the coiling temperature(600-750℃)and annealing temperature(740-820℃)on the yield point behavior is studied.Tensile tests show that coiling temperature has a greater effect on yield point elongation(YPE)and aging index(AI)than the annealing temperature.Microstructure observations show that coiling temperature at 750℃would make the micron-sized carbides appearing at the grain boundary disappear and a number of dispersed nanoscale carbides precipitate in grain interior,corresponding to the highest solid solution carbon content in the matrix of 750℃coiled sample.The experimental results suggest that AI rather than YPE has a positive relationship with the solid solution carbon content of the low-carbon steel.And YPE has a positive relationship with the upper/lower yield strength.展开更多
文摘With the development of technology for earthquake resistant,the research of the low yield point(LYP) steel which used for the fabrication of energy dissipation damper were paid more and more attention.The common studies of the low yield point steel is mainly about the performance with constant amplitude and constant frequency.The low cycle fatigue properties of low yield piont steel were studied by series of test with continuous varying amplitude and varying frequency with the materials testing system by us.The test results showed that low yield point steel of Baosteel have excellent low cycle fatigue properties,which meet the requirement for steel used for the fabrication of energy dissipation damper completely.The low cycle fatigue performance of low yield point steel of Baosteel mainly depended on the amplitude in test.And the effect of varying frequency for the low yield point steel was more less than varying amplitude.
文摘Steel shear wall(SSW) was properly determined using numerical and experimental approaches.The properties of SSW and LYP(low yield point) steel shear wall(LSSW) were measured.It is revealed that LSSW exhibits higher properties compared to SSW in both elastic and inelastic zones.It is also concluded that the addition of CFRP(carbon fiber reinforced polymers) enhances the seismic parameters of LSSW(stiffness,energy absorption,shear capacity,over strength values).Also,stress values applied to boundary frames are lower due to post buckling forces.The effect of fiber angle was also studied and presented as a mathematical equation.
基金This work was financially supported by the Joint Fund of Iron and Steel Research(No.U1660103)National Natural Science Foundation of China(No.51574162)+2 种基金the National Key R&D Program of China(No.2018YFE0306102)3DAP measurements were made in the Instrumental Analysis and Research Center at Shanghai UniversityThe authors would like to express sincere thanks for their support.
文摘Low-carbon steel is widely used for household appliance and automotive panel steel because of its excellent plasticity.Unfortunately,yield point phenomena easily appear in the low-carbon steel produced by a continuous annealing process and cause degradation to the surface quality during processing.The effect of the coiling temperature(600-750℃)and annealing temperature(740-820℃)on the yield point behavior is studied.Tensile tests show that coiling temperature has a greater effect on yield point elongation(YPE)and aging index(AI)than the annealing temperature.Microstructure observations show that coiling temperature at 750℃would make the micron-sized carbides appearing at the grain boundary disappear and a number of dispersed nanoscale carbides precipitate in grain interior,corresponding to the highest solid solution carbon content in the matrix of 750℃coiled sample.The experimental results suggest that AI rather than YPE has a positive relationship with the solid solution carbon content of the low-carbon steel.And YPE has a positive relationship with the upper/lower yield strength.