Nitrogen oxide(NO_(x))pollutants emitted from coal combustion are attracting growing public concern.While the traditional technologies of reducing NO_(x) were mainly focused on terminal treatment,and the research on s...Nitrogen oxide(NO_(x))pollutants emitted from coal combustion are attracting growing public concern.While the traditional technologies of reducing NO_(x) were mainly focused on terminal treatment,and the research on source treatment is limited.This paper proposes a new coal combustion strategy that significantly reduces NO_(x) emissions during coal combustion.This strategy has two important advantages in reducing NO_(x) emissions.First,by introducing iron-based catalyst at the source,which will catalyze the conversion of coke nitrogen to volatile nitrogen during the pyrolysis process,thereby greatly reducing the coke nitrogen content.The second is de-NO_(x) process by a redox reaction between NO_(x) and reducing agents(coke,HCN,NH_(3),etc.)that occurred during coke combustion.Compared to direct combustion of coal,coke prepared by adding iron-based catalyst has 46.1% reduction in NO_(x) emissions.To determine the effect of iron-based additives on de-NO_(x) performance,demineralized coal(de-coal)was prepared to eliminate the effect of iron-based minerals in coal ash.The effects of iron compounds,additive dosages,and combustion temperatures on de-NO_(x) efficiency are systematically studied.The results revealed that the NO_(x) emission of the coke generated by pyrolysis of de-coal loaded with 3%(mass)Fe_(2)O_(3) decreases to 27.3% at combustion temperature of 900℃.Two main reasons for lower NO_(x) emissions were deduced:(1)During the catalytic coal pyrolysis stage,the nitrogen content in the coke decreases with the release of volatile nitrogen.(2)Part of the NO_(x) emitted during the coke combustion was converted into N_(2) for the catalytic effect of the Fe-based catalysts.It is of great practical value and scientific significance to the comprehensive treatment and the clean utilization process of coal.展开更多
MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature...MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature programmed reduction (TPR) and BETsurface area techniques. The result shows the BET surface area of ZrO_2-Al_2O_3 is lower than thatof Al_2O_3 due to the loading of ZrO_2. However the resulted MnO_x/ZrO_2-Al_2O_3 catalyst exhibitshigher activity for methane combustion than MnO_x/Al_2O_3, because the addition of ZrO_2 ontoAl_2O_3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygenactivity in MnO_x, subsequently the activation of methane during combustion. The optimum loading ofZr in MnO_x/ZrO_2-Al_2O_3 is in the range of 5%-10% correlated with the calcination temperatures ofcatalyst supports.展开更多
Catalytic performances of a series Ce/Zr oxides(Ce_xZr_(1-x)O_2)for soot combustion were investigated. The catalytic activities for soot combustion were affected by both the Ce/Zr ratio and the oxygen storage capabili...Catalytic performances of a series Ce/Zr oxides(Ce_xZr_(1-x)O_2)for soot combustion were investigated. The catalytic activities for soot combustion were affected by both the Ce/Zr ratio and the oxygen storage capability of Ce/Zr oxides. O_2-TPD and TG-DTA results indicate that Ce_xZr_(1-x)O_2 can release its lattice oxygen continuously and promote soot combustion even no oxygen occurs in the reaction atmosphere. Among these Ce/Zr oxides, Ce_(0.5)Zr_(0.5)O_2 has the best catalytic activity, and the ignition temperature of soot combustion was about 410 ℃, which is close to the practical exhaust temperature of the diesel engine.展开更多
The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheatin...The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.展开更多
To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized oppositio...To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized opposition-based learning(GOBLPSO)to a low NO_(x) combustion optimization area.Thermal adjustment tests under different ground conditions,variable oxygen conditions,variable operation modes of coal pulverizer conditions,and variable first air pressure conditions were carried out on a 660 MW boiler to obtain samples of combustion optimization.The adaptability of PSO,differential evolution algorithm(DE),OBLPSO,and GOBLPSO was compared and analyzed.Results of 51 times independently optimized experiments show that PSO is better than DE,while the performance of the GOBLPSO algorithm is generally better than that of the PSO and OBLPSO.The median-optimized NO_(x) emission by GOBLPSO is up to 15.8 mg/m^(3) lower than that obtained by PSO.The generalized opposition-based learning can effectively utilize the information of the current search space and enhance the adaptability of PSO to the low NO_(x) combustion optimization of the studied boiler.展开更多
This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Gui...This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.展开更多
In order to get the catalytic mechanism of CeO2 on graphite and coal at 400℃, the morphologies of coal, graphite, and CeO2 before and after combustion were analyzed through X-ray photoelectron spectroscopy (XPS). I...In order to get the catalytic mechanism of CeO2 on graphite and coal at 400℃, the morphologies of coal, graphite, and CeO2 before and after combustion were analyzed through X-ray photoelectron spectroscopy (XPS). It is found that the particle size of coal is mostly between 11.727 and 64.79 μm, while the particle size of CeO2 is between 1.937 and 11.79 μm. The agglomeration of coal and CeO2 can be seen by scanning electron microscopy (SEM) after reaction. XPS results show that with the addition of CeO2, the intensity of binding energy gets stronger, but there is no energy peak transition. Comparing the character of coal with and without the addition of CeO2, it can be seen that the C C bond fractures first at 400℃, while the C-H energy-band takes electrons at the same time to be far away from the Fermi level, and the O 2s, O 2p, and C sp hybrid orbitals are all excited. Adding CeO2 can enhance the activity of the whole coal. In addition, through XPS analysis, combined with the oxygen transfer theory and the electron transfer theory, the catalytic mechanism of CeO2 for pulverized coal combustion could be obtained.展开更多
基金supported by National Natural Science Foundation of China(21878210)Shanxi Provincial Science and Technology Achievement Transformation Guidance Special Program of China(202104021301052)Shanxi Province Patent Transformation Special Program Project(202202054).
文摘Nitrogen oxide(NO_(x))pollutants emitted from coal combustion are attracting growing public concern.While the traditional technologies of reducing NO_(x) were mainly focused on terminal treatment,and the research on source treatment is limited.This paper proposes a new coal combustion strategy that significantly reduces NO_(x) emissions during coal combustion.This strategy has two important advantages in reducing NO_(x) emissions.First,by introducing iron-based catalyst at the source,which will catalyze the conversion of coke nitrogen to volatile nitrogen during the pyrolysis process,thereby greatly reducing the coke nitrogen content.The second is de-NO_(x) process by a redox reaction between NO_(x) and reducing agents(coke,HCN,NH_(3),etc.)that occurred during coke combustion.Compared to direct combustion of coal,coke prepared by adding iron-based catalyst has 46.1% reduction in NO_(x) emissions.To determine the effect of iron-based additives on de-NO_(x) performance,demineralized coal(de-coal)was prepared to eliminate the effect of iron-based minerals in coal ash.The effects of iron compounds,additive dosages,and combustion temperatures on de-NO_(x) efficiency are systematically studied.The results revealed that the NO_(x) emission of the coke generated by pyrolysis of de-coal loaded with 3%(mass)Fe_(2)O_(3) decreases to 27.3% at combustion temperature of 900℃.Two main reasons for lower NO_(x) emissions were deduced:(1)During the catalytic coal pyrolysis stage,the nitrogen content in the coke decreases with the release of volatile nitrogen.(2)Part of the NO_(x) emitted during the coke combustion was converted into N_(2) for the catalytic effect of the Fe-based catalysts.It is of great practical value and scientific significance to the comprehensive treatment and the clean utilization process of coal.
基金This work was financially supported by Shandong Provincial Department of Science and Technology(project number:981206403)and the State Key Laboratory of Coal Conversion at Institute of Coal Chemistry of CAS(2002-2003)
文摘MnO_x/Al_2O_3 and MnO_x/ZrO_2-Al_2O_3 catalysts were prepared by incipientwetness impregnation of Mn(CH_3COO)_2 on the corresponding supports, followed by thecharacterization using X-ray diffraction (XRD), temperature programmed reduction (TPR) and BETsurface area techniques. The result shows the BET surface area of ZrO_2-Al_2O_3 is lower than thatof Al_2O_3 due to the loading of ZrO_2. However the resulted MnO_x/ZrO_2-Al_2O_3 catalyst exhibitshigher activity for methane combustion than MnO_x/Al_2O_3, because the addition of ZrO_2 ontoAl_2O_3 is beneficial for the dispersion of Mn species and the improvement of the lattice oxygenactivity in MnO_x, subsequently the activation of methane during combustion. The optimum loading ofZr in MnO_x/ZrO_2-Al_2O_3 is in the range of 5%-10% correlated with the calcination temperatures ofcatalyst supports.
文摘Catalytic performances of a series Ce/Zr oxides(Ce_xZr_(1-x)O_2)for soot combustion were investigated. The catalytic activities for soot combustion were affected by both the Ce/Zr ratio and the oxygen storage capability of Ce/Zr oxides. O_2-TPD and TG-DTA results indicate that Ce_xZr_(1-x)O_2 can release its lattice oxygen continuously and promote soot combustion even no oxygen occurs in the reaction atmosphere. Among these Ce/Zr oxides, Ce_(0.5)Zr_(0.5)O_2 has the best catalytic activity, and the ignition temperature of soot combustion was about 410 ℃, which is close to the practical exhaust temperature of the diesel engine.
文摘The radiant tube burner was modeled and analyzed by the numerical simulation method to investigate the influence factors and rules of NO_(x) emissions in a W-type radiant tube.These factors,which include air preheating temperature,excess air coefficient,and fuel gas composition,were modified to study their effects on NO_(x) emissions under varying working conditions.Simulation results were compared with the theoretical calculation value based on chemical reaction equilibrium theory and the onsite experimental value to verify the simulation accuracy.The results show that NO_(x) emissions rise with increasing air preheating temperatures.NO_(x) production increases to an extreme value and then decreases during the oxygen-poor to oxygen-enriched process with the rise of the excess air coefficient.Enhancing the proportion of coke oven gas in the fuel gas raises the combustion temperature as well as the NO_(x) discharge.Both the thermal efficiency and NO_(x) emissions should be balanced.Therefore,the recommended values based on the simulation results are as follows:the air preheating temperature should not exceed 400℃,the excess air coefficient should be between 1.1 and 1.2,and the volume fraction of the coke oven gas should not exceed 30%.
文摘To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized opposition-based learning(GOBLPSO)to a low NO_(x) combustion optimization area.Thermal adjustment tests under different ground conditions,variable oxygen conditions,variable operation modes of coal pulverizer conditions,and variable first air pressure conditions were carried out on a 660 MW boiler to obtain samples of combustion optimization.The adaptability of PSO,differential evolution algorithm(DE),OBLPSO,and GOBLPSO was compared and analyzed.Results of 51 times independently optimized experiments show that PSO is better than DE,while the performance of the GOBLPSO algorithm is generally better than that of the PSO and OBLPSO.The median-optimized NO_(x) emission by GOBLPSO is up to 15.8 mg/m^(3) lower than that obtained by PSO.The generalized opposition-based learning can effectively utilize the information of the current search space and enhance the adaptability of PSO to the low NO_(x) combustion optimization of the studied boiler.
文摘This paper reports a field testing of full scale PCC (Pulverized Coal Combustion) boiler study into the influence of constricted air distribution on NO x emissions at unit 3 (125 MW power units, 420 t/h boiler) of Guixi power station, Jiangxi and puts forward the methods to decrease NO x emissions and the principle of boiler operation and regulation through analyzing NO x emissions state under real running condition. Based on boiler constricted air distribution, the experiment mainly tested the influence of primary air, excessive air, boiler load and milling sets (tertiary air) on NO x emissions and found its influence characteristics. A degraded bituminous coal is simply adopted to avoid the test results from other factors.
文摘In order to get the catalytic mechanism of CeO2 on graphite and coal at 400℃, the morphologies of coal, graphite, and CeO2 before and after combustion were analyzed through X-ray photoelectron spectroscopy (XPS). It is found that the particle size of coal is mostly between 11.727 and 64.79 μm, while the particle size of CeO2 is between 1.937 and 11.79 μm. The agglomeration of coal and CeO2 can be seen by scanning electron microscopy (SEM) after reaction. XPS results show that with the addition of CeO2, the intensity of binding energy gets stronger, but there is no energy peak transition. Comparing the character of coal with and without the addition of CeO2, it can be seen that the C C bond fractures first at 400℃, while the C-H energy-band takes electrons at the same time to be far away from the Fermi level, and the O 2s, O 2p, and C sp hybrid orbitals are all excited. Adding CeO2 can enhance the activity of the whole coal. In addition, through XPS analysis, combined with the oxygen transfer theory and the electron transfer theory, the catalytic mechanism of CeO2 for pulverized coal combustion could be obtained.