期刊文献+
共找到247篇文章
< 1 2 13 >
每页显示 20 50 100
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:2
1
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
2
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
3
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Susceptibility of two types of low-alloy hull steels to pit initiation 被引量:6
4
作者 JianminWang XuequnChen GuominLi 《Journal of University of Science and Technology Beijing》 CSCD 2004年第6期555-560,共6页
Four low-alloy hull steels with different alloy elements were selected. Theirsusceptibility to pitting corrosion was compared by means of electrochemical polarization test. Theinclusions in the steels and their pittin... Four low-alloy hull steels with different alloy elements were selected. Theirsusceptibility to pitting corrosion was compared by means of electrochemical polarization test. Theinclusions in the steels and their pitting corrosion characteristics were studied by an electronprobe micro-analyzer (EPMA). The results indicate that some inclusions are the main sources ofpitting corrosion. The susceptibility of nickel-chromium steel to pit initiation is less than thatof manganese steel. Under the same conditions, nickel-chromium steel is easier to passivate thanmanganese steel, and the passive films on nickel-chromium steel surface are more stable than that onmanganese steel. In low-alloy steels, the higher the contents of nickel and chromium, the lower thecritical passive pH value. In the same kind of steel, multi-phase inclusions containing sulfide areeasier to initiate pitting corrosion than other inclusions. 展开更多
关键词 INCLUSION PITTING passivating low-alloy steel
下载PDF
Corrosion behavior and corrosion products of a low-alloy weathering steel in Qingdao and Wanning 被引量:11
5
作者 Shu-tao Wang Shan-wu Yang Ke-wei Gao Xin-lai He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期58-64,共7页
A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in... A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in Qingdao. The rust layer formed on the steel was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption approach, polarization curves, and electrochemical impedance spectroscopy (EIS). The rust formed in Qingdao contains more X-ray amorphous compounds and is more compact than that formed in Wanning. Cr and Cu are enriched in the rust layer near the steel matrix, and the phenomenon is more obvious in Qingdao than in Wanning. The rust layer formed in Qingdao suppresses the anodic and cathodic reaction more remarkably than that formed in Wanning does. The rust layer formed in Qingdao possesses a higher ability to block the permeation of chloride ions than that formed in Wanning does. 展开更多
关键词 low-alloy steel weathering steel atmospheric corrosion marine environment subtropical environment
下载PDF
Dual Phase Heat Treatment of Low-Alloy Steel 被引量:6
6
作者 HAN Jian-min CUI Shi-hai +1 位作者 LI Wei-jing MA Xiao-yan 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第5期47-51,共5页
Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi stee... Dual phase heat treatment is an economical and effective way for improving the properties of low carbon steels and low-alloy steel materials. In this paper, the microstructures and mechanical properties of 20MnSi steel treated by different dual phase heat treatment have been studied. The results show that dual phase heat treatment with pre-quenching technique and then heating from room temperature to the critical zone can achieve finer and more homogeneous microstructure than that with pre-normalizing technique and then cooling from austenite zone to the critical zone. Among all factors affecting dual phase heat treatment, quenching temperature at the critical zone and tempering temperature play an important part in mechanical properties. Using proper dual phase heat treatment technique with computer optimized parameters, the yield strength, the elongation and impact toughness of 20MnSi can reach 860 MPa, 16% and 207 MPa respectively. 展开更多
关键词 low-alloy steel dual phase heat treatment MICROSTRUCTURE OPTIMIZATION
下载PDF
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:8
7
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
下载PDF
Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel 被引量:8
8
作者 En-dian Fan Shi-qi Zhang +3 位作者 Dong-han Xie Qi-yue Zhao Xiao-gang Li Yun-hua Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期249-256,共8页
We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging ... We investigated the effect of nanosized NbC precipitates on hydrogen-induced cracking(HIC)of high-strength low-alloy steel by conducting slow-strain-rate tensile tests(SSRT)and performing continuous hydrogen charging and fracture analysis.The results reveal that the HIC resistance of Nb-bearing steel is obviously superior to that of Nb-free steel,with the fractured Nb-bearing steel in the SSRT exhibiting a smaller ratio of elongation reduction(Iδ).However,as the hydrogen traps induced by NbC precipitates approach hydrogen saturation,the effect of the precipitates on the HIC resistance attenuate.We speculate that the highly dispersed nanosized NbC precipitates act as irreversible hydrogen traps that hinder the accumulation of hydrogen at potential crack nucleation sites.In addition,much like Nb-free steel,the Nb-bearing steel exhibits both H-solution strengthening and the resistance to HIC. 展开更多
关键词 nanosized NbC precipitates high-strength low-alloy steel hydrogen-induced cracking slow-strain-rate tensile hydrogen charging
下载PDF
Modeling of metadynamic recrystallization kinetics after hot deformation of low-alloy steel Q345B 被引量:3
9
作者 马博 彭艳 +1 位作者 刘云飞 贾斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期911-917,共7页
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re... Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6). 展开更多
关键词 low-alloy steel kinetics model hot deformation metadynamic recrystallization activation energy
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
10
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
Numerical Simulation of Welding Deformation for Hull Superstructure Steel Based on the Finite Element Analysis
11
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第z1期212-214,共3页
Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temp... Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temperatureand the heat loss on the surface. At the same time, it analyzed the influence of the deformation and stress, whichgenerated in the plate butt-welding process, to the superstructure steel welding deformation. The result showedthat the deformation and stress generated in the steel plate butt-welding process are considered to be the mainfactors to influence the welding deformation of superstructure steel. It found the effective ways to reduce the weldingdeformation of the hull superstructure steel is to relieve the butt-welding deformation and release butt-welding stressbefore welding the hull superstructure steel. 展开更多
关键词 hull SUPERSTRUCTURE steel FINITE ELEMENT analysis WELDING deformation
下载PDF
MODELING OF AUSTENITE GRAIN SIZE IN LOW-ALLOY STEEL WELD METAL
12
作者 A.G.Huang Y.S.Wang +2 位作者 Z.Y.Li J.G.Xiong Q.Hu School of Materials Science & Engineering,Huazhong University of Science and Technology,Wuhan 430074,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第2期147-154,共8页
The size of austenite grain has significant effects on components and proportions ofvarious ferrites in low-alloy steel weld metal. Therefore, it is important to determinethe size of austenite grain in the weld metal.... The size of austenite grain has significant effects on components and proportions ofvarious ferrites in low-alloy steel weld metal. Therefore, it is important to determinethe size of austenite grain in the weld metal. In this paper, a model based upon thecarbon diffusion rate is developed for computing austenite grain size in low-alloy steelweld metal during continuous cooling. The model takes into account the effects of theweld thermal cycles, inclusion particles and various alloy elements on the austenitegrain growth. The calculating results agree reasonably with those reported experimentalobservations. The model demonstrates a significant promise to understand the weldmicrostructure and properties based on the welding science. 展开更多
关键词 low-alloy steel anstenite mathematical model DIFFUSION
下载PDF
Effect of inter-critical quenching on mechanical properties of casting low-alloy steel
13
作者 Liu Zhongli Shang Yong 《China Foundry》 SCIE CAS 2013年第4期217-220,共4页
For some casting low-alloy steels,traditional quenching and tempering heat treatments can improve the strength;however,sometimes the ductility is not satisf ied.Therefore,some kind of effective heat treatment method s... For some casting low-alloy steels,traditional quenching and tempering heat treatments can improve the strength;however,sometimes the ductility is not satisf ied.Therefore,some kind of effective heat treatment method seems necessary;one which could improve the ductility,but not seriously affect the strength.In this paper,the effect of inter-critical quenching(IQ)on the mechanical properties of casting low-alloy steel was studied.IQ was added between quenching and tempering heat treatment;and the microstructure and mechanical properties were compared to the same steel with the traditional quenching and tempering treatments.The experimental results show that the microstructure comprises small-size ferrite and martensite when the IQ is adopted;and that different temperatures can control the ferrite quantity and distribution,and,as a result,infl uence the mechanical properties.In the case of IQ,the tensile strength decreases just a little,but the ductility increases a lot;and the strength-ductility product(its value is the arithmetic product of elongation and tensile strength)increases by between 6%and 10%,which means the IQ heat treatment can improve comprehensive mechanical properties. 展开更多
关键词 inter-critical quenching low-alloy steel strength-ductility product
下载PDF
Effects of micro-parameter on solidification structure of ZG12MnMoV low-alloy steel based on CAFE model
14
作者 张争险 HUANG Fang ZHANG Yan 《Journal of Chongqing University》 CAS 2016年第3期111-118,共8页
Abstract: We mainly studied effects of nucleation parameters ( △Tv,max and △Ts,max ) and superheat on solidification structure of ZG12MnMoV low-alloy steel by integration of CAFE and experimentation. The result s... Abstract: We mainly studied effects of nucleation parameters ( △Tv,max and △Ts,max ) and superheat on solidification structure of ZG12MnMoV low-alloy steel by integration of CAFE and experimentation. The result shows that grain dimension is not only related with nucleation parameters, but also with superheat. The smaller△Tv,max and △Ts,max get, the tinier grain turns. The lab experimentation on optimum parameter is conducted, the mean diameter of grain in lab test specimen is 153.2 lain, and the mean diameter calculated by CAFE model is 151.1 μm. The calculated solidification structure agrees with the experimental result in the main. 展开更多
关键词 solidification structure CAFE method ZG12MnMoV low-alloy steel SUPERHEAT
下载PDF
Impact property analysis of weld metal and heat-affected zone for low-alloy carbon steel multi-pass welded joint
15
作者 魏世同 陆善平 +1 位作者 李殿中 李依依 《China Welding》 EI CAS 2010年第1期21-25,共5页
Welded joint impact performances of low-alloy carbon steel plates welded by full-automatic gas metal arc welding (GMAW) were evaluated. To clarity the effect of impact temperature on impact properties of weld metal ... Welded joint impact performances of low-alloy carbon steel plates welded by full-automatic gas metal arc welding (GMAW) were evaluated. To clarity the effect of impact temperature on impact properties of weld metal (WM) and heat- affected zone ( HAZ), Charpy V impact tests at different temperatures and fracture surface analysis were carried out. The Charpy V impact energy decreases with the decreasing test temperature both for the WM and HAZ, while the proportion of crystal zone on WM and HAZ impact fracture surface increases with the decreasing test temperature. Research results indicate that the welding defects (void and slag) make the impact energy of WM more scattered and lower than that of HAZ. 展开更多
关键词 low-alloy carbon steel gas metal arc welding impact toughness welding defect
下载PDF
Present situation and countermeasure of low-alloy spring steel wire rod for domestic automobile
16
作者 XING Xianqiang Sinosteel Zhengzhou Research Institute of Steel Wire Products Co.,Ltd., Zhengzhou 450001,Henan,China 《Baosteel Technical Research》 CAS 2010年第S1期60-,共1页
The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality lev... The variety,inner quality and surface quality of low-alloy spring steel wire rod for domestic automobile is summarized in detail.And according to commercial low-alloy spring steel wire rod variety, product quality level and its actual application situation on automobile supplied by present industrially developed country metallurgy enterprises,it is pointed that the variety of low-alloy spring steel wire rod for domestic automobile can't satisfy the requirements of automobile industry development,compare with overseas advanced technology,product quality has the following gaps:the first is that steel purity is low,the control level of non-metallic inclusions is not steady,there is often large grain difficult deforming non-deformation inclusions existing,the control level of steel purity has big difference,the level of large steel factory is high,but its steady has a large gap compare with foreign advanced level,not to mention small steel factory which research and development powder is low.The second is surface complete decarburization can' t be avoided completely.The third is that surface defects are more.The fourth is that composition segregation and structure segregation are not steady,steel wire can't be drawn normally when the segregation is serious. In all,the segregation of 55SiCrA is superior to 60Si2MnA obviously.The industrialization of domestic high level low-alloy spring steel wire rod can't seek quick success and instant benefits,independent innovation perseveringly must be adopted,the success may be reached after master core technologies and adopt the science way of step by step. 展开更多
关键词 AUTOMOBILE low-alloy spring steel wire rod present situation COUNTERMEASURE
下载PDF
Effect of Heat Treatment Parameters on the Mechanical and Microstructure Properties of Low-Alloy Steel
17
作者 Mohamed H. Frihat 《Journal of Surface Engineered Materials and Advanced Technology》 2015年第4期214-227,共14页
This study examines the effect of heat treatment at three different temperatures of 800°C, 950°C and 1100°C on the microstructure and mechanical properties of low-alloy steel with an addition of mangane... This study examines the effect of heat treatment at three different temperatures of 800°C, 950°C and 1100°C on the microstructure and mechanical properties of low-alloy steel with an addition of manganese, chrome and lead. To determine an impact of the applied heat treatment operations, testing of mechanical properties and microstructural examinations of the steel with 0.23%, 0.24%, 0.29% and 0.31% C were conducted. This work shows that the mechanical strengths of the alloy steel are improved with increasing the heat treatment temperature. In addition, the microstructure trends toward recrystallized ferrite grains as the heat treatment temperature increases. 展开更多
关键词 low-alloy steel HEAT Treatment MICROSTRUCTURE MECHANICAL Properties
下载PDF
碳含量对船体钢耐蚀性的影响
18
作者 高峰 周乃鹏 +3 位作者 李健 罗小兵 柴锋 杨才福 《现代交通与冶金材料》 CAS 2024年第2期89-94,共6页
通过干湿循环腐蚀试验模拟热带海洋大气环境,采用光学显微镜、扫描电子显微镜、X射线衍射、动电位极化曲线、阻抗谱测试等表征手段,研究了不同碳含量对船体钢耐蚀性的影响。结果表明,降碳会减少钢中珠光体含量,使腐蚀产物中具有稳定结... 通过干湿循环腐蚀试验模拟热带海洋大气环境,采用光学显微镜、扫描电子显微镜、X射线衍射、动电位极化曲线、阻抗谱测试等表征手段,研究了不同碳含量对船体钢耐蚀性的影响。结果表明,降碳会减少钢中珠光体含量,使腐蚀产物中具有稳定结构的α-FeOOH的比例增加,从而提高基体的电位,并使得腐蚀产物膜层电阻和电荷转移电阻增大,形成粘附性好、稳定、致密的锈层,表现出良好的耐蚀性。 展开更多
关键词 船体钢 碳含量 耐蚀性 热带海洋大气
下载PDF
稻谷壳提取物对钢在HCl中的缓蚀作用
19
作者 欧阳吉秘 雷然 +2 位作者 刘涵琳 邓书端 李向红 《化学研究与应用》 CAS 北大核心 2024年第7期1494-1505,共12页
以稻谷壳为原料,用超声辅助提取法制备出稻谷壳提取物(RHE),探究了其在1.0 mol·L^(-1)HCl中对钢的缓蚀作用。结果表明,RHE对钢在1.0 mol·L^(-1)HCl中有较好的缓蚀效果,缓蚀效果随RHE浓度的增加而增强,且30℃、RHE浓度为250 mg... 以稻谷壳为原料,用超声辅助提取法制备出稻谷壳提取物(RHE),探究了其在1.0 mol·L^(-1)HCl中对钢的缓蚀作用。结果表明,RHE对钢在1.0 mol·L^(-1)HCl中有较好的缓蚀效果,缓蚀效果随RHE浓度的增加而增强,且30℃、RHE浓度为250 mg·L^(-1)时,缓蚀率达到92.86%。同时,RHE具有一定的长期稳定性。RHE的吸附行为符合Langmuir吸附等温式,其标准吸附Gibbs自由能(ΔG^(0))为-20~-40 kJ·mol^(-1),表明RHE的吸附方式为混合吸附。极化曲线测试表明RHE为混合型缓蚀剂,同时抑制阴极和阳极的腐蚀反应,电化学阻抗谱测试(EIS)表明钢在1.0 mol·L^(-1)HCl的腐蚀受电荷转移电阻的控制。溶液的紫外-可见吸收光谱(UVvis)和表面张力证实RHE吸附到钢的表面导致RHE浓度减少。RHE的加入导致钢表面接触角增大,疏水性增强,证实了缓蚀保护膜的形成。扫描电子显微镜(SEM)和金相显微镜进一步证实RHE在钢表面形成缓蚀保护膜。此外,FTIR表明RHE分子中含有O、N等杂原子,再次证实了RHE混合吸附到钢表面形成缓蚀保护膜。 展开更多
关键词 稻谷壳提取物 缓蚀 盐酸 吸附
下载PDF
终轧温度与终冷温度对440 MPa级船体钢组织与性能的影响
20
作者 何有洪 杨成 +3 位作者 柴希阳 师仲然 罗小兵 刘静 《热加工工艺》 北大核心 2024年第12期100-106,共7页
围绕船体钢强度升级与高效焊接的需求,设计了低C-Nb-V复合微合金化钢,研究了不同终轧温度与不同终冷温度下440 MPa级船体钢的组织与力学性能。结果表明:在未再结晶区终轧,随着终轧温度的降低,钢的晶粒得到细化,临界区轧制使钢中大小角... 围绕船体钢强度升级与高效焊接的需求,设计了低C-Nb-V复合微合金化钢,研究了不同终轧温度与不同终冷温度下440 MPa级船体钢的组织与力学性能。结果表明:在未再结晶区终轧,随着终轧温度的降低,钢的晶粒得到细化,临界区轧制使钢中大小角度晶界密度大幅提高,同时带状珠光体逐渐退化,组织由铁素体+珠光体逐渐演变为准多边形铁素体+少量珠光体,在力学性能上体现为强度逐渐提高而-40℃冲击功保持稳定。随着终冷温度的降低,晶粒细化不明显,但是钢中大、小角度晶界密度显著提高,钢的组织由铁素体+珠光体转变为准多边形铁素体+珠光体,再转变为贝氏体+针状铁素体,在力学性能上体现为强度与-40℃冲击功的一并提高。 展开更多
关键词 440 MPa船体钢 终轧温度 终冷温度
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部