期刊文献+
共找到24,842篇文章
< 1 2 250 >
每页显示 20 50 100
A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing 被引量:1
1
作者 Huajing Zong Nan Kang +1 位作者 Zehao Qin Mohamed El Mansori 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1048-1071,共24页
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak... The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced. 展开更多
关键词 additive manufacturing laser powder bed fusion tool steel multi-scaled structure mechanical properties thermal properties
下载PDF
Laser-assisted water jet machining of high quality micro-trap structures on stainless steel surfaces
2
作者 LIU Li YAO Peng +3 位作者 CHU Dong-kai XU Xiang-yue QU Shuo-shuo HUANG Chuan-zhen 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第6期1476-1488,共13页
Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while exte... Secondary electron emission(SEE)has emerged as a critical issue in next-generation accelerators.Mitigating SEE on metal surfaces is crucial for enhancing the stability and emittance of particle accelerators while extending their lifespan.This paper explores the application of laser-assisted water jet technology in constructing high-quality micro-trap structures on 316L stainless steel,a key material in accelerator manufacturing.The study systematically analyzes the impact of various parameters such as laser repetition frequency,pulse duration,average power,water jet pressure,repeat times,nozzle offset,focal position,offset distance between grooves,and processing speed on the surface morphology of stainless steel.The findings reveal that micro-groove depth increases with higher laser power but decreases with increasing water jet pressure and processing speed.Interestingly,repeat times have minimal effect on depth.On the other hand,micro-groove width increases with higher laser power and repeat times but decreases with processing speed.By optimizing these parameters,the researchers achieved high-quality pound sign-shaped trap structure with consistent dimensions.We tested the secondary electron emission coefficient of the"well"structure.The coefficient is reduced by 0.5 at most compared to before processing,effectively suppressing secondary electron emission.These results offer indispensable insights for the fabrication of micro-trap structures on material surfaces.Laser-assisted water jet technology demonstrates considerable potential in mitigating SEE on metal surfaces. 展开更多
关键词 laser-assisted water jet 316L stainless steel micro-trap structures "well"structure surface morphology secondary electron emission(SEE) groove depth groove width
下载PDF
Seismic Response Analysis of Steel Structure Isolation System Under Long-Period Seismic Motion
3
作者 Long Yu Mei Sheng +1 位作者 Huan Feng Jianan Hu 《Journal of Architectural Research and Development》 2024年第3期147-155,共9页
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis... To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings. 展开更多
关键词 Long-period seismic motion steel structure Mid-story isolation structure Isolation bearing Seismic performance
下载PDF
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:8
4
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
下载PDF
Effect of microstructure variation on the corrosion behavior of high-strength low-alloy steel in 3.5wt% NaCl solution 被引量:3
5
作者 Yu-bing Guo Chong Li +4 位作者 Yong-chang Liu Li-ming Yu Zong-qing Ma Chen-xi Liu Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期604-612,共9页
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result... The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower. 展开更多
关键词 high-strength low-alloy steel microstructure corrosion sodium chloride solutions
下载PDF
Effects of micro-parameter on solidification structure of ZG12MnMoV low-alloy steel based on CAFE model
6
作者 张争险 HUANG Fang ZHANG Yan 《Journal of Chongqing University》 CAS 2016年第3期111-118,共8页
Abstract: We mainly studied effects of nucleation parameters ( △Tv,max and △Ts,max ) and superheat on solidification structure of ZG12MnMoV low-alloy steel by integration of CAFE and experimentation. The result s... Abstract: We mainly studied effects of nucleation parameters ( △Tv,max and △Ts,max ) and superheat on solidification structure of ZG12MnMoV low-alloy steel by integration of CAFE and experimentation. The result shows that grain dimension is not only related with nucleation parameters, but also with superheat. The smaller△Tv,max and △Ts,max get, the tinier grain turns. The lab experimentation on optimum parameter is conducted, the mean diameter of grain in lab test specimen is 153.2 lain, and the mean diameter calculated by CAFE model is 151.1 μm. The calculated solidification structure agrees with the experimental result in the main. 展开更多
关键词 solidification structure CAFE method ZG12MnMoV low-alloy steel SUPERHEAT
下载PDF
Effect of Heat Treatment Parameters on the Mechanical and Microstructure Properties of Low-Alloy Steel
7
作者 Mohamed H. Frihat 《Journal of Surface Engineered Materials and Advanced Technology》 2015年第4期214-227,共14页
This study examines the effect of heat treatment at three different temperatures of 800°C, 950°C and 1100°C on the microstructure and mechanical properties of low-alloy steel with an addition of mangane... This study examines the effect of heat treatment at three different temperatures of 800°C, 950°C and 1100°C on the microstructure and mechanical properties of low-alloy steel with an addition of manganese, chrome and lead. To determine an impact of the applied heat treatment operations, testing of mechanical properties and microstructural examinations of the steel with 0.23%, 0.24%, 0.29% and 0.31% C were conducted. This work shows that the mechanical strengths of the alloy steel are improved with increasing the heat treatment temperature. In addition, the microstructure trends toward recrystallized ferrite grains as the heat treatment temperature increases. 展开更多
关键词 low-alloy steel HEAT Treatment MICROstructure MECHANICAL Properties
下载PDF
The Formation of Colored Film on Stainless Steel and the Study for Surface Structure
8
作者 张征林 余琨 +2 位作者 王怡红 宋苇 冯东丹 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期61-66,共6页
This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. ... This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed. 展开更多
关键词 chemical coloration on stainless steel analysis of surface structure
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
9
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation 被引量:1
10
作者 Mingjie Zhao Lihong Jiang +4 位作者 Changmin Li Liang Huang Chaoyuan Sun Jianjun Li Zhenghua Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期323-336,共14页
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging... Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components. 展开更多
关键词 low-alloy high-strength steel work hardening rate constitutive model hot workability multi-pass deformation
下载PDF
Oxide and Sulfide Dispersive Precipitation and Effects on Microstructure and Properties of Low Carbon Steels 被引量:29
11
作者 DeluLIU ZhongbingWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第1期7-9,共3页
Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strip... Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strips. Dimension of them is about 10~20 nm. Electron diffraction study showed that the structure of these precipitates consists with cubic system spinel structure. Their lattice parameter is about 0.83 nm. The results implied that they should be complex oxides of Fe, Al et al. Small sulfide particles with 100-300 nm in size have also been observed. Remarkable strengthening and grain refinement effects can be obtained by the precipitations. The oxygen and sulfur in steels could play beneficial role under certain conditions. 展开更多
关键词 Low carbon steel CSP Spinel structure
下载PDF
Laser cleaning of steel structure surface for paint removal and repaint adhesion 被引量:27
12
作者 Xiaoguang Li Tingting Huang +3 位作者 Ang Wei Chong Rui Zhou Yoo Sang Choo Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第3期340-344,共5页
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo... Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications. 展开更多
关键词 LASER steel structure surface paint removal repainting adhesion
下载PDF
Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process 被引量:7
13
作者 Hao Wang Yan-ping Bao +3 位作者 Ming Zhao Min Wang Xiao-ming Yuan Shuai Gao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第11期1372-1384,共13页
In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning... In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning electron microscopy,and metallographic microscope.The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca,transformed Al2O3 inclusion into spherical CeAlO3 inclusion,and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone.The inclusions were spheroidizing.The size of inclusions was decreased from 3–5μm to 1–2μm,and the distribution was dispersed.Ce played a role in purifying molten steel through desulphurization and deoxidization.Meanwhile,the addition of Ce in steel effectively increased the nucleation particles in the liquid phase,improved the nucleation rate,enlarged the equiaxed grain refinement area,and limited the development of columnar crystals.The average grain size of slab decreased from 45.76 to 35.25μm,and the proportion of large grain size(>50μm)decreased from 40.41%to 23.74%.The macrostructural examination of slab was improved from B0.5 to C2.0,which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate.In addition,due to the inheritance of refined structure in the upstream,the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained,and a refined tempered sorbite structure was obtained.When rare earth element Ce was added,the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm,which realized a remarkable grain refinement strengthening and toughening effect.Mechanical properties such as tensile,yield,and low-temperature impact toughness were significantly improved. 展开更多
关键词 RARE earth HSLA steel INCLUSION structure GRAIN REFINEMENT strengthening
下载PDF
Preliminary investigation of seismic damage to two steel space structures during the 2013 Lushan earthquake 被引量:11
14
作者 Dai Junwu Qu Zhe +1 位作者 Zhang Chenxiao Weng Xuran 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期497-500,共4页
Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan ... Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested. 展开更多
关键词 Lushan earthquake steel space structure gymnasitun seismic damage member buckling fracture failure
下载PDF
Structure Evolution and Solidification Behavior of Austenitic Stainless Steel in Pulsed Magnetic Field 被引量:12
15
作者 LI Qiu-shu LI Hai-bin ZHAI Qi-jie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期69-72,共4页
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica... To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity. 展开更多
关键词 pulsed magnetic field austenitic stainless steel solidification structure solidification behavior
下载PDF
Solidification Structure of Low Carbon Steel Strips with Different Phosphorus Contents Produced by Strip Casting 被引量:8
16
作者 Na LI Zhenyu LIU Yiqing QIU Zhaosen LIN Xianghua LIU Guodong WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期755-758,共4页
In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail... In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains. 展开更多
关键词 PHOSPHORUS Solidification structure Strip casting Low carbon steel
下载PDF
Methodology to Estimate Remaining Service Life of Steel Structure by Possibilistic Reliability Theory 被引量:7
17
作者 XU Gening YANG Ruigang +1 位作者 ZHOU Ke FAN Xiaoning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期780-787,共8页
Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during ... Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system. 展开更多
关键词 steel structure system fuzzy fatigue damage possibilistic reliability
下载PDF
Effects of hot top pulsed magneto-oscillation on solidification structure of steel ingot 被引量:12
18
作者 Hui-cheng Li Yu-xiang Liu +2 位作者 Yun-hu Zhang Zhen Liu Qi-jie Zhai 《China Foundry》 SCIE 2018年第2期110-116,共7页
Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production... Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale. 展开更多
关键词 hot-top pulsed magneto oscillation(HPMO) solidified structures defects of steel ingot
下载PDF
Lessons from the seismic behavior of a steel grid roof structure heavily damaged in Lushan earthquake 被引量:5
19
作者 Li Jichao Qu Zhe Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第1期95-111,共17页
The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with ... The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with field observations to validate the numerical model, based on which a parametric study was performed to provide insight into the failure process and damage patterns of steel grids. The results suggest that the grid damage is strongly related to roofsubstructure interactions. These include not only the substructure's amplification of the vibration, but the uncoordinated displacement of the substructure's columns which support the grid also play an equally important role. In particular, the latter effect may significantly alter the internal force distribution in the steel grid and lead to unexpected buckling of members that are proportioned as tension-only members. While such interactions are generally not accounted for in the design practice for grid structures in China, similar seismic damage may be expected for other existing grid roofs in future earthquakes. As is also demonstrated in this study, seismic isolation of the roof is a promising solution to protect grid roof structures by mitigating the detrimental effects of roof-substructure interactions. 展开更多
关键词 Lushan EARTHQUAKE steel space structure roof-substructure interaction nonlinear dynamic analysis seismic isolation vertical ground motion
下载PDF
Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing 被引量:3
20
作者 Qian Zhao Li-ming Yu +3 位作者 Yong-chang Liu Yuan Huang Zong-qing Ma Hui-jun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第10期1156-1165,共10页
Three oxide-dispersion-strengthened(ODS)steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y_2O_3(wt%,so as the follows)(14Y),Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y_2O_3(14YAl),and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y_2O_3(... Three oxide-dispersion-strengthened(ODS)steels with compositions of Fe-14Cr-2W-0.2V-0.07Ta-0.3Y_2O_3(wt%,so as the follows)(14Y),Fe-14Cr-2W-0.2V-0.07Ta-1Al-0.3Y_2O_3(14YAl),and Fe-14Cr-2W-0.2V-0.07Ta-0.3Ti-0.3 Y_2O_3(14YTi)were fabricated by hot pressing.Transmission electron microscopy(TEM)was used to characterize the microstructures and nanoparticles of these ODS steels.According to the TEM results,14Y,14YAl,and 14YTi ODS steels present similar bimodal structures containing both large and small grains.The addition of Al or Ti has no obvious effect on the microstructure of the steels.The spatial and size distribution of the nanoparticles was also analyzed.The results indicate that the average size of nanoparticles in the 14YTi ODS steel is smaller than that in the 14YAl ODS steel.Nanoparticles such as Y_2O_3,Y_3Al_5O_(12) and YAlO_3,and Y_2Ti_2O_7 were identified in the 14Y,14YAl,and 14YTiODS steels,respectively. 展开更多
关键词 hot PRESSING ODS steel mechanical ALLOYING BIMODAL structure nanoparticle ALUMINUM titanium
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部