期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of inter-critical quenching on mechanical properties of casting low-alloy steel
1
作者 Liu Zhongli Shang Yong 《China Foundry》 SCIE CAS 2013年第4期217-220,共4页
For some casting low-alloy steels,traditional quenching and tempering heat treatments can improve the strength;however,sometimes the ductility is not satisf ied.Therefore,some kind of effective heat treatment method s... For some casting low-alloy steels,traditional quenching and tempering heat treatments can improve the strength;however,sometimes the ductility is not satisf ied.Therefore,some kind of effective heat treatment method seems necessary;one which could improve the ductility,but not seriously affect the strength.In this paper,the effect of inter-critical quenching(IQ)on the mechanical properties of casting low-alloy steel was studied.IQ was added between quenching and tempering heat treatment;and the microstructure and mechanical properties were compared to the same steel with the traditional quenching and tempering treatments.The experimental results show that the microstructure comprises small-size ferrite and martensite when the IQ is adopted;and that different temperatures can control the ferrite quantity and distribution,and,as a result,infl uence the mechanical properties.In the case of IQ,the tensile strength decreases just a little,but the ductility increases a lot;and the strength-ductility product(its value is the arithmetic product of elongation and tensile strength)increases by between 6%and 10%,which means the IQ heat treatment can improve comprehensive mechanical properties. 展开更多
关键词 inter-critical quenching low-alloy steel strength-ductility product
下载PDF
Effect of heat treatment on microstructure and mechanical properties of Ti-containing low alloy martensitic wear-resistant steel 被引量:5
2
作者 Kai Lan Wang Ding Yi-tao Yang 《China Foundry》 SCIE CAS CSCD 2023年第4期329-338,共10页
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector... Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively. 展开更多
关键词 low alloy wear-resistant steel quenching temperature cooling condition PRECIPITATE retained austenite wear resistance
下载PDF
Microstructure and properties evolution of Nb-bearing medium Cr wear-resistant cast steel during heat treatment 被引量:1
3
作者 Jia-cheng Zhang Tuo Zhang Yi-tao Yang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第6期739-751,共13页
The effect of quenching temperature and cooling conditions on the microstructure and mechanical properties of a 0.2%Nb medium chromium wear-resistant cast steel was investigated.The microstructure,carbides and volume ... The effect of quenching temperature and cooling conditions on the microstructure and mechanical properties of a 0.2%Nb medium chromium wear-resistant cast steel was investigated.The microstructure,carbides and volume fraction of retained austenite were characterized using the optical microscope,scanning electron microscope,transmission electron microscope and X-ray diffraction.The influence of heat treatment on hardness,impact toughness and tensile properties of test steel was studied.It can be observed that lath martensite can be obtained under the condition of air cooling and oil cooling upon austenitizing in the range of 900–1020℃.Total carbide content of 0.2–1.1 wt.%under air cooling is more than that under oil cooling due to the lower cooling rate.Nb6C5,M23C6 and M7C3 were found at lower austenitizing temperature,of which niobium carbide mostly located at grain boundaries,while chromium carbides were uniformly distributed in the matrix with the size of 20–50 nm.The chromium carbides are basically dissolved into the matrix in test steel austenitized at 1020°C.Meanwhile,the negligible growth of prior austenite grain size is achieved.Specimen austenitized at 1020℃ and cooled in air+tempered at 200℃ has a best combination of hardness,plasticity and tensile strength due to fine grain size and more amount of retained austenite.Under this condition,the hardness is 58 HRC,the impact toughness is 22.92 J/cm^(2),and the tensile strength is 1136.9 MPa. 展开更多
关键词 wear-resistant steel quenching temperature Cooling condition CARBIDE Retained austenite Strengthening TOUGHENING
原文传递
Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transitiontemperature in a 1000 MPa Ni-Cr-Mo-Cu steel
4
作者 Fei Zhu Li Yang +3 位作者 Feng Chai Xiao-bing Luo Cai-fu Yang Zheng-yan Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2022年第8期1257-1276,共20页
A superior combination of yield strength(1001 MPa)and-20℃ impact toughness(166 J)was obtained in Nb-V-Timicroalloyed Ni-Cr-Mo-Cu steel treated by direct quenching and tempering route(DQT).The tested steels treated by... A superior combination of yield strength(1001 MPa)and-20℃ impact toughness(166 J)was obtained in Nb-V-Timicroalloyed Ni-Cr-Mo-Cu steel treated by direct quenching and tempering route(DQT).The tested steels treated by DQT route and re-austenitization and tempering route(QT)were compared with each other in terms of mechanical properties and microstructures characterized by optical microscopy,transmission electron microscopy,X-ray diffraction,electron back-scattered diffraction method and so on.Strength and Vickers hardness of the tested steel treated by the above two routes vary with isothermal aging temperature(400-600℃),shown as under-aged state,peak-aged state and overaged state.All DQT specimens show higher strength and Vickers hardness than QT specimens with the same aging condition.Furthermore,the largest difference of yield strength between DQT and QT specimens was shown in DQT600 and QT600 specimens.DQT600 or QT600 specimens refers to direct quenched(DQ)or quenched(Q)specimens isothermally aged at 600℃.The main disparities in quenched microstructure between DQ and Q specimens are mainly in morphology of prior austenite grains,dislocation density of martensite matrix and solution amount of Nb and Mo elements dissolving in martensite matrix,which play key roles in affecting microstructure and mechanical properties of DQT and QT specimens.Higher dislocation density of matrix and finer average diameter of both MC(M is any combination of Nb,Mo and V)and Cu-rich particles were shown in DQT600 specimens than in QT600 specimens.Strengthening from dislocations and nanosized MC and Cu-rich particles mainly leads to the largest difference of yield strength between DQT600 and QT600 specimens.In addition,strong dislocation strengthening and precipitation strengthening in DQT600 specimen also elevated its ductile-to-brittle-transition-temperature,compared with QT600 specimen. 展开更多
关键词 Cu-bearing high-strength low-alloy steel Direct quenching Nanosized precipitate Strengthening Ductile-to-brittle-transition-temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部