Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ...Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.展开更多
The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and...The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and collect data that was previously difficult or impossible to obtain. The integration drones in construction engineering presents opportunities for accurate data collection, analysis and visualization, which can improve decision-making processes and improve project outcomes. For example, drones equipped with GIS technology can be used to capture high-resolution aerial images of construction sites, allowing engineers to monitor progress, identify potential issues, and make informed adjustments as needed. By harnessing drones, civil engineers in the civil engineering field can potentially optimize project planning, design and execution while minimizing risks and costs. The work of this topic examines the case of the use of Drones combined with GIS in construction engineering. During this study, aerial photography of a certain segment of the Pristina-Gjilan Highway was taken. The results generated by the processing of aerial photos have been compared with the project. However, further research is needed to fully understand the capabilities and limitations of these technologies in this specific context, as well as to explore any potential challenges and barriers to their widespread adoption.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
Single-tree detection is one of the main research topics in quantifying the structural properties of forests. Drone Li DAR systems and terrestrial laser scanning systems produce high-density point clouds that offer gr...Single-tree detection is one of the main research topics in quantifying the structural properties of forests. Drone Li DAR systems and terrestrial laser scanning systems produce high-density point clouds that offer great promise for forest inventories in limited areas. However, most studies have focused on the upper canopy layer and neglected the lower forest structure. This paper describes an innovative tree detection method using drone Li DAR data from a new perspective of the under-canopy structure. This method relies on trunk point clouds, with undercanopy sections split into heights ranging from 1 to 7 m, which were processed and compared, to determine a suitable height threshold to detect trees. The method was tested in a dense cedar plantation forest in the Aichi Prefecture, Japan, which has a stem density of 1140 stems·ha^(-1) and an average tree age of 42 years. Dense point cloud data were generated from the drone Li DAR system and terrestrial laser scanning with an average point density of 5000 and 6500 points·m^(-2), respectively. Tree detection was achieved by drawing point-cloud section projections of tree trunks at different heights and calculating the center coordinates. The results show that this trunk-section-based method significantly reduces the difficulty of tree detection in dense plantation forests with high accuracy(F1-Score=0.9395). This method can be extended to different forest scenarios or conditions by changing section parameters.展开更多
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ...With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.展开更多
[ Objective ] The paper was to study the occurrence and damage regularity of tobacco cutworm moth (Spodoptera Litura Fabricius) in low-altitude area in Lincang city. [ Method] The adult sex attractant monitoring, fi...[ Objective ] The paper was to study the occurrence and damage regularity of tobacco cutworm moth (Spodoptera Litura Fabricius) in low-altitude area in Lincang city. [ Method] The adult sex attractant monitoring, field investigation of occurrence and damage, and observation of continuous generation development of natural populations were carried out in natural flue-cured tobacco fields. [ Result] In field growth period of flue-cured tobacco under low-altitude of 1 000 - 1300 m, tobacco cutworm moth occurred for 4 generations, the duration of each generation was about 33 d, and the main injurious generation was the third generation. [ Conclusion] The paper provided reference for comprehensive control of tobacco cutworm moth in the low altitude areas.展开更多
Atmospheric inversion phenomenon directly affects the vertical movement of air, which causes the cooling heat of the cooling tower in the power plant to be blocked. Therefore, it is necessary to analyze the atmospheri...Atmospheric inversion phenomenon directly affects the vertical movement of air, which causes the cooling heat of the cooling tower in the power plant to be blocked. Therefore, it is necessary to analyze the atmospheric inversion characteristics of the research project during the design of the air cooling system. Using the low-altitude observing system of the tethered balloon, the on-site observation of the temperature below 300 m in summer is carried out for a coal-fired power integration project in Yulin, Shaanxi, China. Observations were made at 10 fixed times per day, with a cumulative observation of 46 days and 247 effective detections. The data were quality-controlled, and then linearly interpolated. According to the requirements of the project designer, the temperature data of 20, 50, 100, 150, 200, 250, 300 m was used for low-temperature inversion analysis. The research shows that the grounding inversion and low-altitude inversion can be observed at the same time. In the time and space changes, the grounding inversion temperature and intensity are significantly higher than the low-altitude inversion. The maximum inversion of grounding inversion and low-altitude inversion is 2.3?C/hm, 1.0?C/hm. Grounding inversion temperature occurs every time, the frequency is the highest at 20 o’clock, the average intensity is maximum at 17 o’clock, and the average height, maximum intensity and maximum height are maximum at 7 o’clock. When the low-altitude inversion temperature is 18 o’clock, other times can occur, and the frequency is the highest at 15 o’clock, but the inversion layer is shallow, the bottom is high and the intensity is small. Grounding inversion and low-altitude inversion can occur in all levels, and as the height increases, the grounding inversion decreases and the low-temperature inversion increases. The design of the project air cooling tower needs to fully consider the impact caused by the inverse temperature below 300 m.展开更多
With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Cont...With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.展开更多
Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutation...Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.展开更多
This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a p...This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.展开更多
Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the enti...Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the entire environ-ment.Whenfinding a suspicious person,the tracked object cannot be locked in time for tracking.This research replaces the traditionalfixed-point monitor with the intelligent drone and combines the image processing technology and automatic judgment for the movements of the monitored person.This intelligent system can effectively improve the shortcomings of low efficiency and high cost of the traditional monitor system.In this article,we proposed a TIMT(The Intel-ligent Monitoring and Tracking)algorithm which can make the drone have smart surveillance and tracking capabilities.It combined with Artificial Intelligent(AI)face recognition technology and the OpenPose which is able to monitor the phy-sical movements of multiple people in real time to analyze the meaning of human body movements and to track the monitored intelligently through the remote con-trol interface of the drone.This system is highly agile and could be adjusted immediately to any angle and screen that we monitor.Therefore,the system couldfind abnormal conditions immediately and track and monitor them automatically.That is the system can immediately detect when someone invades the home or community,and the drone can automatically track the intruder to achieve that the two significant shortcomings of the traditional monitor will be improved.Experimental results show that the intelligent monitoring and tracking drone sys-tem has an excellent performance,which not only dramatically reduces the num-ber of monitors and the required equipment but also achieves perfect monitoring and tracking.展开更多
From the perspective of the business ecosystem,this paper analyzes the competitive advantage and platform strategy of Da-Jiang Innovations Science and Technology Co.,Ltd.(DJI),a Chinese commercial drone manufacturer t...From the perspective of the business ecosystem,this paper analyzes the competitive advantage and platform strategy of Da-Jiang Innovations Science and Technology Co.,Ltd.(DJI),a Chinese commercial drone manufacturer that is currently leading the global commercial drone industry.DJI was established in 2006 and developed the industry’s first core components such as drone control system.DJI released its“Phantom”in the United States in 2013 and occupied the global commercial drone market accounting for 70%in a short period of time.Its market share has maintained its superiority till present.During the inflection transition from the formation of a new ecosystem to expansion,DJI has defended and strengthened its core technology through a strong containment strategic action of competing with GoPro;therefore,DJI has obtained its hub position of multiple markets with bargaining power.In addition,DJI has entered the surrounding markets of corporate market from the general consumer market,and instilled its own product standards&design standards(reference design).Furthermore,it has stimulated and revitalized coexisting companies,individual&corporate customers for expanding the ecosystem of drone industry.展开更多
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local...Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.展开更多
基金supported by the NationalNatural Science Foundation of China(No.61866023).
文摘Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.
文摘The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and collect data that was previously difficult or impossible to obtain. The integration drones in construction engineering presents opportunities for accurate data collection, analysis and visualization, which can improve decision-making processes and improve project outcomes. For example, drones equipped with GIS technology can be used to capture high-resolution aerial images of construction sites, allowing engineers to monitor progress, identify potential issues, and make informed adjustments as needed. By harnessing drones, civil engineers in the civil engineering field can potentially optimize project planning, design and execution while minimizing risks and costs. The work of this topic examines the case of the use of Drones combined with GIS in construction engineering. During this study, aerial photography of a certain segment of the Pristina-Gjilan Highway was taken. The results generated by the processing of aerial photos have been compared with the project. However, further research is needed to fully understand the capabilities and limitations of these technologies in this specific context, as well as to explore any potential challenges and barriers to their widespread adoption.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金funded by KAKENHI Number 16H02556 of the Cabinet Office,Government of Japan,the Cross-ministerial Strategic Innovation Promotion Program(SIP),“Enhancement of Societal Resiliency Against Natural Disasters”Funding was provided by the Japan Science and Technology Agency(JST)as part of the Belmont ForumThis work was supported by JST SPRING,Grant Number JPMJSP2124。
文摘Single-tree detection is one of the main research topics in quantifying the structural properties of forests. Drone Li DAR systems and terrestrial laser scanning systems produce high-density point clouds that offer great promise for forest inventories in limited areas. However, most studies have focused on the upper canopy layer and neglected the lower forest structure. This paper describes an innovative tree detection method using drone Li DAR data from a new perspective of the under-canopy structure. This method relies on trunk point clouds, with undercanopy sections split into heights ranging from 1 to 7 m, which were processed and compared, to determine a suitable height threshold to detect trees. The method was tested in a dense cedar plantation forest in the Aichi Prefecture, Japan, which has a stem density of 1140 stems·ha^(-1) and an average tree age of 42 years. Dense point cloud data were generated from the drone Li DAR system and terrestrial laser scanning with an average point density of 5000 and 6500 points·m^(-2), respectively. Tree detection was achieved by drawing point-cloud section projections of tree trunks at different heights and calculating the center coordinates. The results show that this trunk-section-based method significantly reduces the difficulty of tree detection in dense plantation forests with high accuracy(F1-Score=0.9395). This method can be extended to different forest scenarios or conditions by changing section parameters.
基金supported by the National Natural Science Foundation of China (62101603)the Shenzhen Science and Technology Program(KQTD20190929172704911)+3 种基金the Aeronautical Science Foundation of China (2019200M1001)the National Nature Science Foundation of Guangdong (2021A1515011979)the Guangdong Key Laboratory of Advanced IntelliSense Technology (2019B121203006)the Pearl R iver Talent Recruitment Program (2019ZT08X751)。
文摘With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.
基金Supported by Project of China National Tobacco Corporation Yunnan Branch( 2010YN77)
文摘[ Objective ] The paper was to study the occurrence and damage regularity of tobacco cutworm moth (Spodoptera Litura Fabricius) in low-altitude area in Lincang city. [ Method] The adult sex attractant monitoring, field investigation of occurrence and damage, and observation of continuous generation development of natural populations were carried out in natural flue-cured tobacco fields. [ Result] In field growth period of flue-cured tobacco under low-altitude of 1 000 - 1300 m, tobacco cutworm moth occurred for 4 generations, the duration of each generation was about 33 d, and the main injurious generation was the third generation. [ Conclusion] The paper provided reference for comprehensive control of tobacco cutworm moth in the low altitude areas.
文摘Atmospheric inversion phenomenon directly affects the vertical movement of air, which causes the cooling heat of the cooling tower in the power plant to be blocked. Therefore, it is necessary to analyze the atmospheric inversion characteristics of the research project during the design of the air cooling system. Using the low-altitude observing system of the tethered balloon, the on-site observation of the temperature below 300 m in summer is carried out for a coal-fired power integration project in Yulin, Shaanxi, China. Observations were made at 10 fixed times per day, with a cumulative observation of 46 days and 247 effective detections. The data were quality-controlled, and then linearly interpolated. According to the requirements of the project designer, the temperature data of 20, 50, 100, 150, 200, 250, 300 m was used for low-temperature inversion analysis. The research shows that the grounding inversion and low-altitude inversion can be observed at the same time. In the time and space changes, the grounding inversion temperature and intensity are significantly higher than the low-altitude inversion. The maximum inversion of grounding inversion and low-altitude inversion is 2.3?C/hm, 1.0?C/hm. Grounding inversion temperature occurs every time, the frequency is the highest at 20 o’clock, the average intensity is maximum at 17 o’clock, and the average height, maximum intensity and maximum height are maximum at 7 o’clock. When the low-altitude inversion temperature is 18 o’clock, other times can occur, and the frequency is the highest at 15 o’clock, but the inversion layer is shallow, the bottom is high and the intensity is small. Grounding inversion and low-altitude inversion can occur in all levels, and as the height increases, the grounding inversion decreases and the low-temperature inversion increases. The design of the project air cooling tower needs to fully consider the impact caused by the inverse temperature below 300 m.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00225201,Development of Control Rights Protection Technology to Prevent Reverse Use of Military Unmanned Vehicles,50)by MSIT under the ITRC(Information Technology Research Center)Supported Program(IITP-2023-2018-0-01417,Industrial 5G Bigdata Based Deep Learning Models Development and Human Resource Cultivation,50)supervised by the IITP.
文摘With the advancement of unmanned aerial vehicle(UAV)technology,the market for drones and the cooperation of many drones are expanding.Drone swarms move together in multiple regions to perform their tasks.A Ground Control Server(GCS)located in each region identifies drone swarmmembers to prevent unauthorized drones from trespassing.Studies on drone identification have been actively conducted,but existing studies did not consider multiple drone identification environments.Thus,developing a secure and effective identification mechanism for drone swarms is necessary.We suggested a novel approach for the remote identification of drone swarms.For an efficient identification process between the drone swarm and the GCS,each Reader drone in the region collects the identification information of the drone swarmand submits it to the GCS for verification.The proposed identification protocol reduces the verification time for a drone swarm by utilizing batch verification to verify numerous drones in a drone swarmsimultaneously.To prove the security and correctness of the proposed protocol,we conducted a formal security verification using ProVerif,an automatic cryptographic protocol verifier.We also implemented a non-flying drone swarmprototype usingmultiple Raspberry Pis to evaluate the proposed protocol’s computational overhead and effectiveness.We showed simulation results regarding various drone simulation scenarios.
基金funding by the Challengeable Future Defense Technology Research and Development Program through the Agency For Defense Development(ADD)funded by the Defense Acquisition Program Administration(DAPA)in 2023(No.915024201).
文摘Moving-target-defense(MTD)fundamentally avoids an illegal initial compromise by asymmetrically increasing the uncertainty as the attack surface of the observable defender changes depending on spatial-temporal mutations.However,the existing naive MTD studies were conducted focusing only on wired network mutations.And these cases have also been no formal research on wireless aircraft domains with attributes that are extremely unfavorable to embedded system operations,such as hostility,mobility,and dependency.Therefore,to solve these conceptual limitations,this study proposes normalized drone-type MTD that maximizes defender superiority by mutating the unique fingerprints of wireless drones and that optimizes the period-based mutation principle to adaptively secure the sustainability of drone operations.In addition,this study also specifies MF2-DMTD(model-checkingbased formal framework for drone-type MTD),a formal framework that adopts model-checking and zero-sum game,for attack-defense simulation and performance evaluation of drone-type MTD.Subsequently,by applying the proposed models,the optimization of deceptive defense performance of drone-type MTD for each mutation period also additionally achieves through mixed-integer quadratic constrained programming(MIQCP)and multiobjective optimization-based Pareto frontier.As a result,the optimal mutation cycles in drone-type MTD were derived as(65,120,85)for each control-mobility,telecommunication,and payload component configured inside the drone.And the optimal MTD cycles for each swarming cluster,ground control station(GCS),and zone service provider(ZSP)deployed outside the drone were also additionally calculated as(70,60,85),respectively.To the best of these authors’knowledge,this study is the first to calculate the deceptive efficiency and functional continuity of the MTD against drones and to normalize the trade-off according to a sensitivity analysis with the optimum.
文摘This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.
文摘Traditional monitoring systems that are used in shopping malls or com-munity management,mostly use a remote control to monitor and track specific objects;therefore,it is often impossible to effectively monitor the entire environ-ment.Whenfinding a suspicious person,the tracked object cannot be locked in time for tracking.This research replaces the traditionalfixed-point monitor with the intelligent drone and combines the image processing technology and automatic judgment for the movements of the monitored person.This intelligent system can effectively improve the shortcomings of low efficiency and high cost of the traditional monitor system.In this article,we proposed a TIMT(The Intel-ligent Monitoring and Tracking)algorithm which can make the drone have smart surveillance and tracking capabilities.It combined with Artificial Intelligent(AI)face recognition technology and the OpenPose which is able to monitor the phy-sical movements of multiple people in real time to analyze the meaning of human body movements and to track the monitored intelligently through the remote con-trol interface of the drone.This system is highly agile and could be adjusted immediately to any angle and screen that we monitor.Therefore,the system couldfind abnormal conditions immediately and track and monitor them automatically.That is the system can immediately detect when someone invades the home or community,and the drone can automatically track the intruder to achieve that the two significant shortcomings of the traditional monitor will be improved.Experimental results show that the intelligent monitoring and tracking drone sys-tem has an excellent performance,which not only dramatically reduces the num-ber of monitors and the required equipment but also achieves perfect monitoring and tracking.
文摘From the perspective of the business ecosystem,this paper analyzes the competitive advantage and platform strategy of Da-Jiang Innovations Science and Technology Co.,Ltd.(DJI),a Chinese commercial drone manufacturer that is currently leading the global commercial drone industry.DJI was established in 2006 and developed the industry’s first core components such as drone control system.DJI released its“Phantom”in the United States in 2013 and occupied the global commercial drone market accounting for 70%in a short period of time.Its market share has maintained its superiority till present.During the inflection transition from the formation of a new ecosystem to expansion,DJI has defended and strengthened its core technology through a strong containment strategic action of competing with GoPro;therefore,DJI has obtained its hub position of multiple markets with bargaining power.In addition,DJI has entered the surrounding markets of corporate market from the general consumer market,and instilled its own product standards&design standards(reference design).Furthermore,it has stimulated and revitalized coexisting companies,individual&corporate customers for expanding the ecosystem of drone industry.
文摘Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.