期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network 被引量:9
1
作者 YE Tao ZHAO Zongyang +2 位作者 ZHANG Jun CHAI Xinghua ZHOU Fuqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期841-853,共13页
Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balanc... Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balancing detection precision and speed.Additionally,their accuracy is insufficient,particularly for small objects in complex environments.To solve these problems,we propose a lightweight feature-enhanced convolutional neural network able to perform detection with high precision detection for low-attitude flying objects in real time to provide guidance information to suppress black-flying UAVs.The proposed network consists of three modules.A lightweight and stable feature extraction module is used to reduce the computational load and stably extract more low-level feature,an enhanced feature processing module significantly improves the feature extraction ability of the model,and an accurate detection module integrates low-level and advanced features to improve the multiscale detection accuracy in complex environments,particularly for small objects.The proposed method achieves a detection speed of 147 frames per second(FPS)and a mean average precision(mAP)of 90.97%for a dataset composed of flying objects,indicating its potential for low-altitude object detection.Furthermore,evaluation results based on microsoft common objects in context(MS COCO)indicate that the proposed method is also applicable to object detection in general. 展开更多
关键词 unmanned aerial vehicle(UAV) deep learning lightweight network object detection low-attitude
下载PDF
UAV safe route planning based on PSO-BAS algorithm 被引量:3
2
作者 ZHANG Honghong GAN Xusheng +1 位作者 LI Shuangfeng CHEN Zhiyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1151-1160,共10页
In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that consider... In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that considers regional risk assessment is proposed.Firstly,the low-altitude airspace is discretized based on rasterization,and then the UAV operating characteristics and environmental characteristics are combined to quantify the risk value in the low-altitude airspace to obtain a 3D risk map.The path risk value is taken as the cost,the particle swarm optimization-beetle antennae search(PSO-BAS)algorithm is used to plan the spatial 3D route,and it effectively reduces the generated path redundancy.Finally,cubic B-spline curve is used to smooth the planned discrete path.A flyable path with continuous curvature and pitch angle is generated.The simulation results show that the generated path can exchange for a path with a lower risk value at a lower path cost.At the same time,the path redundancy is low,and the curvature and pitch angle continuously change.It is a flyable path that meets the UAV performance constraints. 展开更多
关键词 unmanned aerial vehicle(UAV) low-attitude airspace mission planning risk assessment particle swarm optimization beetle antennae search(BAS) cubic B-spline
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部