Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)...Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.展开更多
Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C cou...Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.展开更多
Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embe...Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.展开更多
Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmissi...Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.展开更多
Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of ac...Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system.展开更多
Crosslinked poly(vinyl alcohol)(PVA)based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells(DEFC).The membranes were functionalised by means of the addition of gr...Crosslinked poly(vinyl alcohol)(PVA)based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells(DEFC).The membranes were functionalised by means of the addition of graphene oxide(GO)and sulfonated graphene oxide(SGO)and crosslinked with sulfosuccinic acid(SSA).The chemical structure was corroborated and suitable thermal properties were found.Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes,a significant reduction of the ethanol solution swelling and crossover was encountered,more relevant for those functionalised with SGO.In general,the composite membranes were stable under simulated service conditions.The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion.These membranes are alternative polyelectrolytes,which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon.展开更多
Composite polymer electrolyte membranes were prepared with poly(vinyl alcohol)(PVA).Two different molecular weight(Mw),67·103 and 130·103 g·mol−1 were selected,cross-linked with sulfosuccinic acid(SSA)a...Composite polymer electrolyte membranes were prepared with poly(vinyl alcohol)(PVA).Two different molecular weight(Mw),67·103 and 130·103 g·mol−1 were selected,cross-linked with sulfosuccinic acid(SSA)and doped graphene oxide(GO).The effects on the membranes obtained from these polymers were characterized in order to evaluate the fuel cell performance.Electron microscopy showed a proper nanoparticle distribution in the polymer matrix.The chemical structure was evaluated by Fourier transform infrared spectroscopy.The absence of a crystalline structure and the enhancement on the thermal stability with the addition of 1%of GO was demonstrated by thermal characterization.Total transference number and protonic conductivity were correlated to the performance of a hydrogen fuel cell.Overall,a power increase in the composite membranes with lower molecular weight was observed.Shorter polymer chains may improve protonic conductivity and consequently the fuel cell performance.展开更多
以农林废弃生物质气化合成混合醇工艺为对象,利用混合生命周期评估方法对百吨级系统进行环境影响分析。通过构建系统的工艺模型和收集生命周期资源消耗及排放清单,研究农林业、收储运和制取等各阶段的投入和排放特性,对棉秆、玉米秸秆...以农林废弃生物质气化合成混合醇工艺为对象,利用混合生命周期评估方法对百吨级系统进行环境影响分析。通过构建系统的工艺模型和收集生命周期资源消耗及排放清单,研究农林业、收储运和制取等各阶段的投入和排放特性,对棉秆、玉米秸秆、木屑和枝丫柴4种原料制取系统的环境影响特性进行分析,并与5万吨级系统进行比较。结果表明:百吨级系统生命周期化石能源消耗和温室气体排放分别在589~734 kJ/MJ混合醇和63.2~80.8 g CO_(2)eq/MJ混合醇范围内,制取阶段的电力消耗是最主要的影响因素,其次为系统设备设施投入,玉米秸秆混合醇的环境影响最大,这与原料碳含量低及混合醇收率低有关。展开更多
To study the applicability of biodiesel in marine engines,this research investigated the performance,combustion characteristics,and emission characteristics of biodiesel(B100),diesel,and a 50%volume blend of the two f...To study the applicability of biodiesel in marine engines,this research investigated the performance,combustion characteristics,and emission characteristics of biodiesel(B100),diesel,and a 50%volume blend of the two fuels(B50)in a marine engine.This study was conducted on a 4-cylinder,520 mm-bore,two-stroke,low-speed marine engine with a common rail fuel and exhaust gas charge system.The three fuels were tested at different loads from 25%–100%with a step size of 25%.Results showed that the fuel consumption of pure biodiesel increased by about 13.5%and 3.8%relative to that of diesel at 25%and 100%loads,respectively,and by about 6%at 50%and 75%loads.In-cylinder combustion pressure was slightly reduced when the engine ran on biofuel,and black carbon emissions from biodiesel were reduced by an average of 54.7%.Compared with those from diesel,the carbon CO and total hydrocarbon emissions from B100 were reduced by 11.3%and 39%,respectively.Nitroxide emissions were elevated for B100 and B50 under all loading conditions.The properties of B50 blended diesel lie between those of B100 and diesel.In terms of combustion characteristics and emissions,biodiesel can be used without changing the engine parameters and can effectively reduce pollution,such as black carbon and carbon monoxide.展开更多
基金supported by the National Natural Science Foundation of China(21571038,22035004)the Education Department of Guizhou Province(2021312)+2 种基金the Foundation of Guizhou Province(2019-5666)the National Key R&D Program of China(2017YFA0700101)the State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,202009)。
文摘Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.
基金the National Natural Science Foundation of China(21902017)the Project of Fundamental Research and Frontier Exploration of Chongqing(cstc2019jcyj-msxmX0052)+5 种基金the Foundation of Technological Innovation and Application Development of Chongqing(cstc2021jscx-msxmX0308)the Key Projects of Technology Innovation and Application Development of Chongqing(cstc2019jscx-gksbX0022)the Banan Science and Technology Foundation of Chongqing(2018TJ03,2020QC374)the Major Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-M202101101)the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China(KJQN20211107)the Scientific Research Foundation of Chongqing University of Technology(2020ZDZ022)。
文摘Electrocatalytic CO_(2)reduction reaction to low-carbon alcohol is a challenging task,especially high selectivity for ethanol,which is mainly limited by the regulation of reaction intermediates and subsequent C–C coupling.A Cu-Co bimetallic catalyst with CN vacancies is successfully developed by H_(2)cold plasma toward a high-efficiency CO_(2)RR into low-carbon alcohol.The Cu-Co PBA-V_(CN)(Prussian blue analogues with CN vacancies)electrocatalyst yields methanol and ethanol as major products with a total low-carbon alcohol FE of 83.8%(methanol:39.2%,ethanol:44.6%)at-0.9 V vs.RHE,excellent durability(100 h)and a small onset potential of-0.21 V.ATR-SEIRAS(attenuated total internal reflection surface enhanced infrared absorption spectroscopy)and DFT(density functional theory)reveal that the steric hindrance of V_(CN)can enhance the CO generation from*COOH,and the C–C coupling can also be increased by CO spillover on uniformly dispersed Cu atoms.This work provides a strategy for the design and preparation of electrocatalysts for CO_(2)RR into low-carbon alcohol products and highlights the impact of catalyst steric hindrance to catalytic performance.
基金Supported by the National Natural Science Foundation of China (No. 29976033) and the State Key Basic Science Research Project (G20000264).
文摘Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.
基金supported by the MATTM (Italy) for the PIRODE Project No 94the MSE for the PRIT Project Industria 2015the MIUR (Italy) for the FIRB 2010 Project RBFR10J4H7 002 and HYDROLAB2
文摘Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.
基金supported by the National Natural Science Foundation of China (21603041)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘Nanostructured interface is significant for the electrocatalysis process. Here we comparatively studied the electrooxidation of alcohols catalyzed by nanostructured palladium or palladium-cerium oxide. Two kinds of active sites were observed in palladium-cerium oxide system, attributing to the co-action of Pd-cerium oxide interface and Pd sites alone, by CO stripping technique, a structure-sensitive process generally employed to probe the active sites. Active sites resulting from the nanostructured interfacial contact of Pd and cerium oxide were confirmed by high resolution transmission electron microscopy and electrochemical CO stripping approaches. Electrochemical measurements of cyclic voltammetry and chronometry results demonstrated that Pd-cerium oxide catalysts exhibited much higher catalytic performances for alcohols oxidation than Pd alone in terms of activity, stability and anti-poisoning ability.The improved performance was probably attributed to the nanostructured active interface in which the catalytic ability from each component can be maximized through the synergistic action of bi-functional mechanism and electronic effect. The calculated catalytic efficiency of such active sites was many times higher than that of the Pd active sites alone. The present work showed the significance of valid nanostructured interface design and fabrication in the advanced catalysis system.
基金the support of the European Union through the European Regional Development Funds(ERDF)The Spanish Ministry of Economy,Industry and Competitiveness,is thanked for the research project POLYDECARBOCELL(ENE2017-86711-C3-1-R)The Spanish Ministry of Education,Culture and Sports is thanked for the FPU grant for O.Gil-Castell(FPU13/01916)。
文摘Crosslinked poly(vinyl alcohol)(PVA)based composite films were prepared as polyelectrolyte membranes for low temperature direct ethanol fuel cells(DEFC).The membranes were functionalised by means of the addition of graphene oxide(GO)and sulfonated graphene oxide(SGO)and crosslinked with sulfosuccinic acid(SSA).The chemical structure was corroborated and suitable thermal properties were found.Although the addition of GO and SGO slightly decreased the proton conductivity of the membranes,a significant reduction of the ethanol solution swelling and crossover was encountered,more relevant for those functionalised with SGO.In general,the composite membranes were stable under simulated service conditions.The addition of GO and SGO particles permitted to buffer the loss and almost retain similar proton conductivity than prior to immersion.These membranes are alternative polyelectrolytes,which overcome current concerns of actual commercial membranes such as the high cost or the crossover phenomenon.
基金funded by the Spanish Ministry of Economy,Industry and Competitiveness,through the research project POLYDECARBOCELL(ENE2017-86711-C3-1-R)by the Spanish Ministry of Education,Culture and Sports through the FPU grant for O.Gil-Castell(FPU13/01916).
文摘Composite polymer electrolyte membranes were prepared with poly(vinyl alcohol)(PVA).Two different molecular weight(Mw),67·103 and 130·103 g·mol−1 were selected,cross-linked with sulfosuccinic acid(SSA)and doped graphene oxide(GO).The effects on the membranes obtained from these polymers were characterized in order to evaluate the fuel cell performance.Electron microscopy showed a proper nanoparticle distribution in the polymer matrix.The chemical structure was evaluated by Fourier transform infrared spectroscopy.The absence of a crystalline structure and the enhancement on the thermal stability with the addition of 1%of GO was demonstrated by thermal characterization.Total transference number and protonic conductivity were correlated to the performance of a hydrogen fuel cell.Overall,a power increase in the composite membranes with lower molecular weight was observed.Shorter polymer chains may improve protonic conductivity and consequently the fuel cell performance.
文摘以农林废弃生物质气化合成混合醇工艺为对象,利用混合生命周期评估方法对百吨级系统进行环境影响分析。通过构建系统的工艺模型和收集生命周期资源消耗及排放清单,研究农林业、收储运和制取等各阶段的投入和排放特性,对棉秆、玉米秸秆、木屑和枝丫柴4种原料制取系统的环境影响特性进行分析,并与5万吨级系统进行比较。结果表明:百吨级系统生命周期化石能源消耗和温室气体排放分别在589~734 kJ/MJ混合醇和63.2~80.8 g CO_(2)eq/MJ混合醇范围内,制取阶段的电力消耗是最主要的影响因素,其次为系统设备设施投入,玉米秸秆混合醇的环境影响最大,这与原料碳含量低及混合醇收率低有关。
基金Ministry of Industry and Information Technology High-tech Ship Research Project(Grant No.MC-202019-C08)Shanghai Ship Intelligent Operation and Maintenance and Energy Efficiency Monitoring Engineering Technology Research Center,Shanghai Science and Technology Program(Grant No.20DZ2252300).
文摘To study the applicability of biodiesel in marine engines,this research investigated the performance,combustion characteristics,and emission characteristics of biodiesel(B100),diesel,and a 50%volume blend of the two fuels(B50)in a marine engine.This study was conducted on a 4-cylinder,520 mm-bore,two-stroke,low-speed marine engine with a common rail fuel and exhaust gas charge system.The three fuels were tested at different loads from 25%–100%with a step size of 25%.Results showed that the fuel consumption of pure biodiesel increased by about 13.5%and 3.8%relative to that of diesel at 25%and 100%loads,respectively,and by about 6%at 50%and 75%loads.In-cylinder combustion pressure was slightly reduced when the engine ran on biofuel,and black carbon emissions from biodiesel were reduced by an average of 54.7%.Compared with those from diesel,the carbon CO and total hydrocarbon emissions from B100 were reduced by 11.3%and 39%,respectively.Nitroxide emissions were elevated for B100 and B50 under all loading conditions.The properties of B50 blended diesel lie between those of B100 and diesel.In terms of combustion characteristics and emissions,biodiesel can be used without changing the engine parameters and can effectively reduce pollution,such as black carbon and carbon monoxide.