期刊文献+
共找到30,564篇文章
< 1 2 250 >
每页显示 20 50 100
Synergetic optimization operation method for distribution network based on SOP and PV 被引量:1
1
作者 Lei Chen Ning Zhang +4 位作者 Xingfang Yang Wei Pei Zhenxing Zhao Yinan Zhu Hao Xiao 《Global Energy Interconnection》 EI CSCD 2024年第2期130-141,共12页
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices... The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate. 展开更多
关键词 Synergetic optimization Soft open point(SOP) Photovoltaic(PV) distribution network
下载PDF
Mixed Integer Robust Programming Model for Multimodal Fresh Agricultural Products Terminal Distribution Network Design
2
作者 Feng Yang Zhong Wu Xiaoyan Teng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期719-738,共20页
The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mi... The low efficiency and high cost of fresh agricultural product terminal distribution directly restrict the operation of the entire supply network.To reduce costs and optimize the distribution network,we construct a mixed integer programmingmodel that comprehensively considers tominimize fixed,transportation,fresh-keeping,time,carbon emissions,and performance incentive costs.We analyzed the performance of traditional rider distribution and robot distribution modes in detail.In addition,the uncertainty of the actual market demand poses a huge threat to the stability of the terminal distribution network.In order to resist uncertain interference,we further extend the model to a robust counterpart form.The results of the simulation show that the instability of random parameters will lead to an increase in the cost.Compared with the traditional rider distribution mode,the robot distribution mode can save 12.7%on logistics costs,and the distribution efficiency is higher.Our research can provide support for the design of planning schemes for transportation enterprise managers. 展开更多
关键词 Fresh agricultural product terminal distribution network rider delivery robot delivery UNCERTAINTY
下载PDF
Application of DSAPSO Algorithm in Distribution Network Reconfiguration with Distributed Generation
3
作者 Caixia Tao Shize Yang Taiguo Li 《Energy Engineering》 EI 2024年第1期187-201,共15页
With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization p... With the current integration of distributed energy resources into the grid,the structure of distribution networks is becoming more complex.This complexity significantly expands the solution space in the optimization process for network reconstruction using intelligent algorithms.Consequently,traditional intelligent algorithms frequently encounter insufficient search accuracy and become trapped in local optima.To tackle this issue,a more advanced particle swarm optimization algorithm is proposed.To address the varying emphases at different stages of the optimization process,a dynamic strategy is implemented to regulate the social and self-learning factors.The Metropolis criterion is introduced into the simulated annealing algorithm to occasionally accept suboptimal solutions,thereby mitigating premature convergence in the population optimization process.The inertia weight is adjusted using the logistic mapping technique to maintain a balance between the algorithm’s global and local search abilities.The incorporation of the Pareto principle involves the consideration of network losses and voltage deviations as objective functions.A fuzzy membership function is employed for selecting the results.Simulation analysis is carried out on the restructuring of the distribution network,using the IEEE-33 node system and the IEEE-69 node system as examples,in conjunction with the integration of distributed energy resources.The findings demonstrate that,in comparison to other intelligent optimization algorithms,the proposed enhanced algorithm demonstrates a shorter convergence time and effectively reduces active power losses within the network.Furthermore,it enhances the amplitude of node voltages,thereby improving the stability of distribution network operations and power supply quality.Additionally,the algorithm exhibits a high level of generality and applicability. 展开更多
关键词 Reconfiguration of distribution network distributed generation particle swarm optimization algorithm simulated annealing algorithm active network loss
下载PDF
Neural network study of the nuclear ground-state spin distribution within a random interaction ensemble
4
作者 Deng Liu Alam Noor A +1 位作者 Zhen-Zhen Qin Yang Lei 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期216-227,共12页
The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t... The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists. 展开更多
关键词 Neural network Two-body random ensemble Spin distribution of nuclear ground state
下载PDF
An Algorithm for Short-Circuit Current Interval in Distribution Networks with Inverter Type Distributed Generation Based on Affine Arithmetic
5
作者 Yan Zhang Bowen Du +3 位作者 Benren Pan GuannanWang Guoqiang Xie Tong Jiang 《Energy Engineering》 EI 2024年第7期1903-1920,共18页
During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in unc... During faults in a distribution network,the output power of a distributed generation(DG)may be uncertain.Moreover,the output currents of distributed power sources are also affected by the output power,resulting in uncertainties in the calculation of the short-circuit current at the time of a fault.Additionally,the impacts of such uncertainties around short-circuit currents will increase with the increase of distributed power sources.Thus,it is very important to develop a method for calculating the short-circuit current while considering the uncertainties in a distribution network.In this study,an affine arithmetic algorithm for calculating short-circuit current intervals in distribution networks with distributed power sources while considering power fluctuations is presented.The proposed algorithm includes two stages.In the first stage,normal operations are considered to establish a conservative interval affine optimization model of injection currents in distributed power sources.Constrained by the fluctuation range of distributed generation power at the moment of fault occurrence,the model can then be used to solve for the fluctuation range of injected current amplitudes in distributed power sources.The second stage is implemented after a malfunction occurs.In this stage,an affine optimization model is first established.This model is developed to characterizes the short-circuit current interval of a transmission line,and is constrained by the fluctuation range of the injected current amplitude of DG during normal operations.Finally,the range of the short-circuit current amplitudes of distribution network lines after a short-circuit fault occurs is predicted.The algorithm proposed in this article obtains an interval range containing accurate results through interval operation.Compared with traditional point value calculation methods,interval calculation methods can provide more reliable analysis and calculation results.The range of short-circuit current amplitude obtained by this algorithm is slightly larger than those obtained using the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Therefore,the proposed algorithm has good suitability and does not require iterative calculations,resulting in a significant improvement in computational speed compared to the Monte Carlo algorithm and the Latin hypercube sampling algorithm.Furthermore,the proposed algorithm can provide more reliable analysis and calculation results,improving the safety and stability of power systems. 展开更多
关键词 Short circuit calculation inverter type distributed power supplies affine arithmetic distribution network
下载PDF
A Distributed Photovoltaics Ordering Grid-Connected Method for Analyzing Voltage Impact in Radial Distribution Networks
6
作者 Cuiping Li Kunqi Gao +4 位作者 Can Chen Junhui Li Xiaoxiao Wang Yinchi Shao Xingxu Zhu 《Energy Engineering》 EI 2024年第10期2937-2959,共23页
In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and ba... In recent years,distributed photovoltaics(DPV)has ushered in a good development situation due to the advantages of pollution-free power generation,full utilization of the ground or roof of the installation site,and balancing a large number of loads nearby.However,under the background of a large-scale DPV grid-connected to the county distribution network,an effective analysis method is needed to analyze its impact on the voltage of the distribution network in the early development stage of DPV.Therefore,a DPV orderly grid-connected method based on photovoltaics grid-connected order degree(PGOD)is proposed.This method aims to orderly analyze the change of voltage in the distribution network when large-scale DPV will be connected.Firstly,based on the voltagemagnitude sensitivity(VMS)index of the photovoltaics permitted grid-connected node and the acceptance of grid-connected node(AoGCN)index of other nodes in the network,thePGODindex is constructed to determine the photovoltaics permitted grid-connected node of the current photovoltaics grid-connected state network.Secondly,a photovoltaics orderly grid-connected model with a continuous updating state is constructed to obtain an orderly DPV grid-connected order.The simulation results illustrate that the photovoltaics grid-connected order determined by this method based on PGOD can effectively analyze the voltage impact of large-scale photovoltaics grid-connected,and explore the internal factors and characteristics of the impact. 展开更多
关键词 Radial distribution network distributed photovoltaics photovoltaics grid-connected order degree electrical distance photovoltaics action area
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
7
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Research on Scheduling Strategy of Flexible Interconnection Distribution Network Considering Distributed Photovoltaic and Hydrogen Energy Storage
8
作者 Yang Li Jianjun Zhao +2 位作者 Xiaolong Yang He Wang Yuyan Wang 《Energy Engineering》 EI 2024年第5期1263-1289,共27页
Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of... Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method. 展开更多
关键词 Seasonal hydrogen storage flexible interconnection AC/DC distribution network photovoltaic absorption scheduling strategy
下载PDF
Stability Study of Low Voltage Electrical Distribution Network: Audit and Improvement of DJEGBE Mini Solar Photovoltaic Power Plant in the Commune of OUESSE (Benin)
9
作者 Bernard N. Tokpohozin Sibiath Osséni +2 位作者 Jean-Louis Fannou Vincent Adigbé Christian D. Akowanou 《Energy and Power Engineering》 2024年第10期345-357,共13页
The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current ... The supply of quality energy is a major concern for distribution network managers. This is the case for the company ASEMI, whose subscribers on the DJEGBE mini-power station network are faced with problems of current instability, voltage drops, and repetitive outages. This work is part of the search for the stability of the electrical distribution network by focusing on the audit of the DJEGBE mini photovoltaic solar power plant electrical network in the commune of OUESSE (Benin). This aims to highlight malfunctions on the low-voltage network to propose solutions for improving current stability among subscribers. Irregularities were noted, notably the overloading of certain lines of the PV network, implying poor distribution of loads by phase, which is the main cause of voltage drops;repetitive outages linked to overvoltage caused by lightning and overcurrent due to overload;faulty meters, absence of earth connection at subscribers. Peaks in consumption were obtained at night, which shows that consumption is greater in the evening. We examined the existing situation and processed the data collected, then simulated the energy consumption profiles with the network analyzer “LANGLOIS 6830” and “Excel”. The power factor value recorded is an average of 1, and the minimum value is 0.85. The daily output is 131.08 kWh, for a daily demand of 120 kWh and the average daily consumption is 109.92 kWh, or 83.86% of the energy produced per day. These results showed that the dysfunctions are linked to the distribution and the use of produced energy. Finally, we proposed possible solutions for improving the electrical distribution network. Thus, measures without investment and those requiring investment have been proposed. 展开更多
关键词 LV distribution network Energy Audit Mini PV Plant Malfunctions Corrective Measures
下载PDF
Probability Distribution of China Aviation Network Average Degree of Edge Vertices and Its Evolutionary Trace Based on Complex Network
10
作者 Cheng Xiangjun Zhang Chunyue Liang Yanping 《Journal of Traffic and Transportation Engineering》 2024年第2期51-62,共12页
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network w... In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of average degree of edge vertices of China aviation network were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the average degrees of edge vertices in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the average degree of edge vertices had the probability distribution of normal function and the position parameters and scale parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network average degree of edge vertices normal distribution linear evolution trace
下载PDF
Probability Distribution of Ratio of China Aviation Network Edge Vertices Degree and Its Evolutionary Trace Based on Complex Network
11
作者 Cheng Xiangjun Yang Fang Wei Liying 《Journal of Traffic and Transportation Engineering》 2024年第3期119-129,共11页
In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were s... In order to reveal the complex network characteristics and evolution principle of China aviation network, the probability distribution and evolution trace of ratio of China aviation network edge vertices degree were studied based on the statistics data of China civil aviation network in 1988, 1994, 2001, 2008 and 2015. According to the theory and method of complex network, the network system was constructed with the city where the airport was located as the network node and the route between cities as the edge of the network. Based on the statistical data, the ratio of edge vertices degree in China aviation network in 1988, 1994, 2001, 2008 and 2015 were calculated. Using the probability statistical analysis method and regression analysis approach, it was found that the ratio of edge vertices degree had linear probability distribution and the two parameters of the probability distribution had linear evolution trace. 展开更多
关键词 Complex network China aviation network ratio of edge vertices degree linear probability distribution linear evolution trace.
下载PDF
Analysis and Research on 10kV Distribution Network Faults
12
作者 Jiyuan Wang Ouzhu Ciren +1 位作者 Xiaokang Zhou Ruijin Zhu 《Journal of Electronic Research and Application》 2024年第3期89-96,共8页
The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network... The 10kV distribution network is an essential component of the power system,and its stable operation is crucial for ensuring reliable power supply.However,various factors can lead to faults in the distribution network.In order to enhance the safety and reliability of power distribution,this paper focuses on the analysis of faults in the 10kV distribution network caused by natural factors,operational factors,human factors,and equipment factors.It elucidates the various hazards resulting from distribution network faults and proposes corresponding preventive measures for different types of faults in the 10kV distribution network.The aim is to mitigate or reduce the impact of distribution network faults,ensuring the safe and stable operation of the distribution system. 展开更多
关键词 10kV distribution network Line faults Fault hazards Preventive measures
下载PDF
Evolutionary Game-theoretic Modeling of Massive Distributed Renewable Energy Deployment Towards Low-carbon Distribution Networks 被引量:2
13
作者 Xuanyi Xiao Jianbing Yin +3 位作者 Lin Chen Mingchang Wang Yi Zhao Zhiyi Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1519-1528,共10页
This paper proposes an evolutionary game-theoretic model of massive distributed renewable energy deployment in order to shed light on the self-organization sustainable developments of renewable energies in distributio... This paper proposes an evolutionary game-theoretic model of massive distributed renewable energy deployment in order to shed light on the self-organization sustainable developments of renewable energies in distribution networks towards low-carbon targets. Since neighboring buses can interact in terms of energy exchanges, the return matrices of individual buses in the evolutionary game are established based on profiles of loads and renewable energy generation. More specifically, an evolutionary strategy is proposed based on the return matrices for individual buses to determine whether or not to deploy renewable energies in the next round of the game. Then, a dynamic model is derived for analyzing the renewable energy penetration rate in the distribution network throughout the multi-round evolutionary game. In theory, this model can reveal the self-organization process of renewable energy deployment in the distribution network. With this model, the distribution network operator would be aided in designing the incentives for buses deploying renewable energies toward a pre-defined low-carbon target. Numerical results on an actual 141-bus system and a synthetic 2000-bus system have demonstrated the validity and efficiency of the proposed model. 展开更多
关键词 distribution network renewable energy deployment SELF-ORGANIZATION evolutionary game
原文传递
Adaptive Update Distribution Estimation under Probability Byzantine Attack
14
作者 Gang Long Zhaoxin Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1667-1685,共19页
The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this pa... The secure and normal operation of distributed networks is crucial for accurate parameter estimation.However,distributed networks are frequently susceptible to Byzantine attacks.Considering real-life scenarios,this paper investigates a probability Byzantine(PB)attack,utilizing a Bernoulli distribution to simulate the attack probability.Historically,additional detection mechanisms are used to mitigate such attacks,leading to increased energy consumption and burdens on distributed nodes,consequently diminishing operational efficiency.Differing from these approaches,an adaptive updating distributed estimation algorithm is proposed to mitigate the impact of PB attacks.In the proposed algorithm,a penalty strategy is initially incorporated during data updates to weaken the influence of the attack.Subsequently,an adaptive fusion weight is employed during data fusion to merge the estimations.Additionally,the reason why this penalty term weakens the attack has been analyzed,and the performance of the proposed algorithm is validated through simulation experiments. 展开更多
关键词 distribution estimation network security least-mean-square binomial distribution probability Byzantine attack
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
15
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
Recurrent neural network decoding of rotated surface codes based on distributed strategy
16
作者 李帆 李熬庆 +1 位作者 甘启迪 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期322-330,共9页
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre... Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder. 展开更多
关键词 quantum error correction rotated surface code recurrent neural network distributed strategy
下载PDF
Machine learning ensemble model prediction of northward shift in potato cyst nematodes(Globodera rostochiensis and G.pallida)distribution under climate change conditions
17
作者 Yitong He Guanjin Wang +3 位作者 Yonglin Ren Shan Gao Dong Chu Simon J.McKirdy 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3576-3591,共16页
Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosec... Potato cyst nematodes(PCNs)are a significant threat to potato production,having caused substantial damage in many countries.Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies,especially given the impact of climate change on pest species invasion and distribution.Machine learning(ML),specifically ensemble models,has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.Thus,this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions,providing the initial element for invasion risk assessment.We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.Then,five machine learning models were employed to build two groups of ensembles,single-algorithm ensembles(ESA)and multi-algorithm ensembles(EMA),and compared their performances.In this research,the EMA did not always perform better than the ESA,and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.However,the total area of suitable regions will not change significantly,occupying 16-20%of the total land surface(18%under current conditions).This research alerts policymakers and practitioners to the risk of PCNs’incursion into new regions.Additionally,this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control. 展开更多
关键词 invasive species distribution future climates homogeneous climate predictors single-algorithm ensembles multi-algorithm ensembles artificial neural network
下载PDF
Coordinated planning for flexible interconnection and energy storage system in low-voltage distribution networks to improve the accommodation capacity of photovoltaic 被引量:2
18
作者 Jiaguo Li Lu Zhang +1 位作者 Bo Zhang Wei Tang 《Global Energy Interconnection》 EI CSCD 2023年第6期700-713,共14页
The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and v... The increasing proportion of distributed photovoltaics(DPVs)and electric vehicle charging stations in low-voltage distribution networks(LVDNs)has resulted in challenges such as distribution transformer overloads and voltage violations.To address these problems,we propose a coordinated planning method for flexible interconnections and energy storage systems(ESSs)to improve the accommodation capacity of DPVs.First,the power-transfer characteristics of flexible interconnection and ESSs are analyzed.The equipment costs of the voltage source converters(VSCs)and ESSs are also analyzed comprehensively,considering the differences in installation and maintenance costs for different installation locations.Second,a bilevel programming model is established to minimize the annual comprehensive cost and yearly total PV curtailment capacity.Within this framework,the upper-level model optimizes the installation locations and capacities of the VSCs and ESSs,whereas the lower-level model optimizes the operating power of the VSCs and ESSs.The proposed model is solved using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-II).The effectiveness of the proposed planning method is validated through an actual LVDN scenario,which demonstrates its advantages in enhancing PV accommodation capacity.In addition,the economic benefits of various planning schemes with different flexible interconnection topologies and different PV grid-connected forms are quantitatively analyzed,demonstrating the adaptability of the proposed coordinated planning method. 展开更多
关键词 Low-voltage distribution network Photovoltaic accommodation Flexible interconnection Energy storage system Bilevel programming
下载PDF
Correlation knowledge extraction based on data mining for distribution network planning 被引量:2
19
作者 Zhifang Zhu Zihan Lin +4 位作者 Liping Chen Hong Dong Yanna Gao Xinyi Liang Jiahao Deng 《Global Energy Interconnection》 EI CSCD 2023年第4期485-492,共8页
Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.Th... Traditional distribution network planning relies on the professional knowledge of planners,especially when analyzing the correlations between the problems existing in the network and the crucial influencing factors.The inherent laws reflected by the historical data of the distribution network are ignored,which affects the objectivity of the planning scheme.In this study,to improve the efficiency and accuracy of distribution network planning,the characteristics of distribution network data were extracted using a data-mining technique,and correlation knowledge of existing problems in the network was obtained.A data-mining model based on correlation rules was established.The inputs of the model were the electrical characteristic indices screened using the gray correlation method.The Apriori algorithm was used to extract correlation knowledge from the operational data of the distribution network and obtain strong correlation rules.Degree of promotion and chi-square tests were used to verify the rationality of the strong correlation rules of the model output.In this study,the correlation relationship between heavy load or overload problems of distribution network feeders in different regions and related characteristic indices was determined,and the confidence of the correlation rules was obtained.These results can provide an effective basis for the formulation of a distribution network planning scheme. 展开更多
关键词 distribution network planning Data mining Apriori algorithm Gray correlation analysis Chi-square test
下载PDF
Distribution Line Longitudinal ProtectionMethod Based on Virtual Measurement Current Restraint
20
作者 WeiWang Yang Yu +3 位作者 Simin Luo Wenlin Liu Wei Tang Yuanbo Ye 《Energy Engineering》 EI 2024年第2期315-337,共23页
As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on ... As an effective approach to achieve the“dual-carbon”goal,the grid-connected capacity of renewable energy increases constantly.Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions.However,the inherent randomness,intermittency,and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics.Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources.Therefore,a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper.The positive sequence current data and the network parameters are used to calculate the virtual measurement current which compensates for the output current of photovoltaic(PV).The waveform difference between the virtual measured current and the terminal current for internal and external faults is used to construct the protection method.An improved edit distance algorithm is proposed to measure the similarity between virtual measurement current and terminal measurement current.Finally,the feasibility of the protection method is verified through PSCAD simulation. 展开更多
关键词 Photovoltaic interconnection distribution network longitudinal protection method edit distance algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部