Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-te...Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.展开更多
With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great impo...With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great importance to the ecological management and environmental restoration of abandoned mines.The long-term traditional development path of rural areas,following the model of“pollution first,treatment later,”fails to meet the needs of sustainable development.The contradiction between mine economic development and ecological environment degradation is becoming increasingly prominent,which urgently needs to be solved.Under the guidance of the Party and the state,in order to implement the relevant policies of“green mountains and clear waters are gold and silver mountains,”we emphasize rural green development,and the transformation of rural green development path is imperative.This paper takes Datu Mine in Xinhe Village,Dadukou District,Chongqing as the research object,combines rural ecological development as the research basis,and innovatively integrates the“educational research”model,aiming to provide practical strategies for the sustainable development of rural landscapes in abandoned mines.展开更多
It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The pla...It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.展开更多
Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technic...Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technical Revolution in Ecological and Efficient Coal Mining and Utilization & Intelligence and Diverse Coordination of Coal-based Energy System," initiated by Chinese Academy of Engineering, puts forward three stages(3.0, 4.0 and 5.0) of China's coal industry development strategy. Aimed at "reduced staff,ultra-low ecological damage, and emission level near to natural gas," breakthroughs should be achieved in the following three key technologies during the China Coal Industry 3.0 stage(2016–2025): including intelligent coal mining, ecological mining, ultra-low emission and environmental protection. This paper focuses on the development trends of the China Coal Industry 3.0 and its support for China Coal Industry 4.0 and 5.0 is analyzed and prospected as well, which may offer technical assistance and strategy orientation for realizing the transformation from traditional coal energy to clean energy.展开更多
Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in...Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.展开更多
China has nearly a hundred mining cities derived from mining development.While mining development has brought about immense achievements in a city’s economic construction,it has also resulted in different levels of d...China has nearly a hundred mining cities derived from mining development.While mining development has brought about immense achievements in a city’s economic construction,it has also resulted in different levels of damage to the eco-environment of the mining city,leaving behind a lot of subsided wasteland and heavily confining the sustainable development and transformation there.How to restore and exploit the land and eco-environment disrupted by mining development in an effective way,therefore,has become a pressing challenge that Chinese mining cities are facing.In this paper,the planning and construction of Nanhu Eco-city in the suburb of Tangshan City is analyzed as an example.After characterizing the coal-mining subsided lands in Kailuan Tangshan Mine originated in different periods and under different geological mining conditions and evaluating their safety level,the authors try to demonstrate how eco-restoration and comprehensive land exploitation should be implemented by making the best use of available local resources to achieve "economy-society-environment" sustainability and coexistence in a mining city.展开更多
To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was resea...To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.展开更多
The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great sign...The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.展开更多
Coal mining has brought serious damages to neighboring environment and ecosystem,and degradation of ecological environment has seriously influenced life of neighboring residents and sustainable development of coal ind...Coal mining has brought serious damages to neighboring environment and ecosystem,and degradation of ecological environment has seriously influenced life of neighboring residents and sustainable development of coal industry.Destroyed ecological environment of mines in Huainan,Anhui Province was introduced in this study,ecological restoration principles,methods and procedures of mines were explored.The paper proposed that the harmonious development of economy,society and ecological environment must be considered in the ecological restoration.Combing with current situation of local mining areas,practical eco-restoration technical solutions were given by following ecological restoration principles to realize the sustainable development of mines.展开更多
The development and exploration mode of coal resource activities in China result in tremendous waste of resources and ecological environment pollution problems. This article analyzed the use of economic theory of exte...The development and exploration mode of coal resource activities in China result in tremendous waste of resources and ecological environment pollution problems. This article analyzed the use of economic theory of externalities of coal mining activities from the point of environmental economics principles, proposed the ecological compensation connotation of coal mining activities, and analyzed the feasibility of the implementation of ecological compensation from economic viewpoint.展开更多
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj...Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.展开更多
[Objective] The aim was to study ecological sensitivity in Jinjie mining area. [Method] Taking Jinjie mining area as study object, based on RS and GIS technology, ecological sensitivity in Jinjie mining area was asses...[Objective] The aim was to study ecological sensitivity in Jinjie mining area. [Method] Taking Jinjie mining area as study object, based on RS and GIS technology, ecological sensitivity in Jinjie mining area was assessed comprehensively from the aspects of soil erosion, desertification and geological disaster by means of multivariate weighted stack method. [Result] Most of Jinjie mining area belonged to extremely high sensitive or high sensitive area which accounted for 73.35% of total area, with little moderate sensitive (19.50%), low sensitive (0.96%) and non-sensitive area (6.19%); the unreasonable development of mineral resources would damage its ecological environment severely. [Conclusion] The study could provide theoretical foundation for the protection of ecological environment in mining area.展开更多
In this paper, introducing new remote sensing and geographic information technology to solve the problem of data collection and analysis, this makes the study of ecological risk assessment very quick and accurate. Tak...In this paper, introducing new remote sensing and geographic information technology to solve the problem of data collection and analysis, this makes the study of ecological risk assessment very quick and accurate. Taking the Shan Xin mining area of the tin mine in Lengshuijiang of Hunan Province as the research object, using the remote sensing image data of three periods in 2005, 2010 and 2015, the remote sensing image is classified carefully and the landscape classification map of the mining area is obtained. The ecological risk index is introduced and the ecological risk values are sampled and interpolated on the ArcGIS platform. The ecological risk spatial distribution map based on the landscape pattern index was obtained. The ecological risk was divided into 5 levels by using the Jenks natural classification method, and each ecological risk grade area was counted. The research results show that: from year 2005 to year 2010, landscape ecological risk trend of the mining area is growing up;the trend rising area of landscape ecological risk is mainly in the southwest and northeast of the Shan Xin mining field;the area of higher and high ecological risk is increasing year by year;and the trend of dispersed development in space is obvious;the development trend of ecological risk in the mining area is rapidly increasing;in 2010 - 2015, the higher and high ecological risk area decrease slightly with the increasing of area of grassland and residential low vulnerability of landscape types;the ecological risk area showed a slow decreasing trend. The research results provide an objective reference for decision making of ecological environment governance.展开更多
Through analyzing basic conditions of the "five mining areas" in the Laoqing Mountain of the Dianchi Lake Basin, in Kunming City, South China, the ecological restoration design of "integrating engineeri...Through analyzing basic conditions of the "five mining areas" in the Laoqing Mountain of the Dianchi Lake Basin, in Kunming City, South China, the ecological restoration design of "integrating engineering protection and biological restoration, building the landscape ecological security pattern of the Laoqing Mountain" was proposed. Considering the different ecological functional areas, varying engineering measures, greening patterns, and irrigation means were selected for the ecological restoration, including site management, vegetation restoration, management and utilization etc.. These ecological restoration measures will produce favorable ecological benefits, and also take landscape effect and sustainable development into consideration, which will contribute to the ecological restoration of the "five mining areas", and provide a scientific and feasible reference for the ecological restoration in China.展开更多
It is well known that the mining industry produces a large amount of derelict land, and causes pollution of water loss and soil erosion as well as other environmental damage in China. As land is under pressure in Chi...It is well known that the mining industry produces a large amount of derelict land, and causes pollution of water loss and soil erosion as well as other environmental damage in China. As land is under pressure in China, it is now policy to restore or reclaim land despoiled by mining, the aim being to develop sustainable and healthy arable land ecosystems. This paper outlines the principles and approaches of ecological restoration, which have been adopted in Shanxi Province with reference to three typical surface mines. In the research, the principles of ecological engineering and ecological succession are considered as the critical theories of ecological restoration in mine degraded land. Meanwhile, the paper made a comparative research on main links of ecological rebuilding in three surface mines in Shanxi Province, which include new land construction, treatment of toxic substances, control of soil erosion, fertility management, irrigation, ecological planning and the establishment of legislation systems. As the research demonstrated, for successful restoration, new land construction is the fundamental framework, but it must be integrated with ecological engineering including ecological planning, the control of soil erosion and vegetation establishment and ecosystem creation in order to optimise land productivity and soil fertility. In addition, the establishment of the legislation systems and organization of administration are also indispensable aspects of ecological rebuilding in mined land.展开更多
Disordered mining activities have destroyed ecosystem of coal mines and threatened local ecological security. Ecological security problems in coal mines mainly involve pollution, biology, ecosystem and landscape. To s...Disordered mining activities have destroyed ecosystem of coal mines and threatened local ecological security. Ecological security problems in coal mines mainly involve pollution, biology, ecosystem and landscape. To solve these problems, this study gave countermeasures from the perspective of policy management, technical support and public participation, especially public participation helps restore the damaged eco-environment and guarantee ecological security of coal展开更多
According to the present situation of ecological reconstruction of coal mines(ERCM)in Shanxi,and considering the technical requirements of Guidelines for Mine Ecological Environment Protection and Recovery Managemen...According to the present situation of ecological reconstruction of coal mines(ERCM)in Shanxi,and considering the technical requirements of Guidelines for Mine Ecological Environment Protection and Recovery Management Programming,new issues faced by ERCM have been systematically analyzed,including the investigation of ecological destruction status,classification of damaged ecological environment,ecological reconstruction(ER)sustainability,driving force for ER,and so on.On this basis,suggestions for ERCM and advices for the ERCM programming are proposed.展开更多
Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling...Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.展开更多
The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation...The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation of resources in Ningxia Ningdong Energy-Chemical Base, and major factors which restrain the development, were discussed. Countermeasures were put forward at last.展开更多
Since the sustainable development has been widely acknowledged worldwide,the sustainable campus development based on low-carbon campus construction has already become a tendency of building resource-saving and environ...Since the sustainable development has been widely acknowledged worldwide,the sustainable campus development based on low-carbon campus construction has already become a tendency of building resource-saving and environment-friendly society.It is a hot and difficult topic in the current campus planning to measure,estimate and construct low-carbon campuses.This paper calculated the ecological footprint of traffic,water,energy and daily life on the campus of Peking University Shenzhen Graduate School,obtained the energy consumption of each item on campus and individual low-carbon activities using questionnaire survey and interview,compared the data with those of other domestic and foreign campuses.The results showed that(1) Ecological footprint of Peking University Shenzhen Graduate School in 2016 was 4,269 hm^2,and per capita ecological footprint was 1.49 hm^2;(2) Total carbon emission in 2016 was 13.4×107 kg,among which power generation and food produced the most carbon emission;(3) Students had strong awareness of low-carbon life,and the main obstacles for low-carbon life were "Hard to change living habits","Greedy vanity",and "No efficiency instruction";(4) In terms of the overall proportion,control of energy consumption is the main approach of reducing campus carbon emission,which is similar to other domestic and foreign campuses.The carbon emission of daily life in Peking University Shenzhen Graduate School was significantly higher than that of foreign campuses,while that of traffic was lower.Suggestions and improvement measures were put forward in view of the existing problems.展开更多
文摘Artisanal gold mining,a labor-intensive and antiquated technique,is a growing industry and the source of income for rural communities all over the world.However,artisanal gold mining has potential negative and long-term effects on economy,environment,and society.This study collected soil samples from 16 sample points including a control point to examine the pollution degrees and spatial distribution of heavy metals,as well as ecological and health risks associated with heavy metal pollution in the Ijero-Ekiti mining site,Nigeria.Geographical Information System(GIS)and remote sensing technologies were used to identify regions with high concentrations of heavy metals and assess the environmental impact of gold mining activities.The results show that the mean heavy metal concentrations of 16 soil pointa are 8.94(±5.97)mg/kg for As,0.18(±0.54)mg/kg for Cd,0.11(±1.06)mg/kg for Co,14.32(±3.43)mg/kg for Cr,6.89(±0.64)mg/kg for Cu,48.92(±11.77)mg/kg for Fe,135.81(±30.75)mg/kg for Mn,5.92(±0.96)mg/kg for Ni,5.72(±1.66)mg/kg for Pb,and 13.94(±1.38)mg/kg for Zn.The study reveals that heavy metal concentration in soils follows the order of Mn>Fe>Cr>Zn>As>Cu>Ni>Pb>Co>Cd.An analysis of soil samples indicates that 3 principal components(PCs)account for 70.008%of the total variance and there are strong positive correlations between various pairs of heavy metals.The total potential ecological risk index(309.599)in the study area is high.Non-carcinogenic risk suggests that there may be long-term health impacts on people who work in the mining areas due to chronic exposure to the environment.Based on the study,the hazard index of carcinogenic health risks associated with heavy metals through ingestion is 520.00×10^(–4).Dermal contact from As and Cr also increases the risk of cancer,with the highest hazard index value of 18.40×10^(–4).The lowest exposure pathway,with the hazard index value of 0.68×10^(–4),indicates that the inhalation of heavy metals has a comparatively low risk of cancer.This study recommends the formulation of policies to monitor the Ijero-Ekiti mining site and other regions in Nigeria where indiscriminate artisanal gold mining activities exist.
基金National Innovation Training Project“Landscape Design of Educational Research Base Based on Mine Ecological Restoration:Taking the Restoration of Datu Mine in Xinhe Village,Dadukou District as an Example”(202312608002X)Chongqing Institute of Engineering Innovation Training Project“Yitian Xuegu”Innovative Design Research on Rural Education Practice Base in Longhe Town,Fengdu CountyChongqing Institute of Engineering School-Level Topic“Research on Urban Waterfront Landscape Design Based on the Concept of River Ecological Restoration:Taking the Section of Huaxi River in Chongqing Institute of Engineering as an Example”(2022xskz02)。
文摘With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great importance to the ecological management and environmental restoration of abandoned mines.The long-term traditional development path of rural areas,following the model of“pollution first,treatment later,”fails to meet the needs of sustainable development.The contradiction between mine economic development and ecological environment degradation is becoming increasingly prominent,which urgently needs to be solved.Under the guidance of the Party and the state,in order to implement the relevant policies of“green mountains and clear waters are gold and silver mountains,”we emphasize rural green development,and the transformation of rural green development path is imperative.This paper takes Datu Mine in Xinhe Village,Dadukou District,Chongqing as the research object,combines rural ecological development as the research basis,and innovatively integrates the“educational research”model,aiming to provide practical strategies for the sustainable development of rural landscapes in abandoned mines.
基金Supported by Scientific Research Program of Guangxi Provincial Department of Education(201010LX014)~~
文摘It was proposed that park planning should be based on local economic development,should focus on the preservation of primitive ecological conditions and the application of low-carbon and energy-saving concepts.The planning of Ancient Banyan Park in Mengshan County by following the principles of respecting local history and culture,improving functions and supporting facilities,human-centered,overall planning and all-around consideration,respecting characteristics of the local area(the planning site),satisfying operation requirements of the park,applying low-carbon and energy-saving concepts,and avoiding over-engineering,aimed at protecting natural images of the park,primitive history,culture and characteristics of the local area and providing a space for local residents' various activities.Modern aesthetic forms were combined,cultural connotation of natural environment stressed to build a landscape space system of the Ancient Banyan Park that matches well with environment of the planning site.The park was designed into 4 functional areas:sport area,fitness plaza area,garden recreational area and ancient banyan cultural area.Different functions of these subareas were taken into consideration to create conservation-minded garden landscapes which were both independent and unified.
基金supported by the Major State Basic Research Development Program of China (No. 2014CB046302)
文摘Coal is an essential fossil fuel in China; however, coal mining and its utilization are being under the increasing pressure from ecological and environmental protection. Therefore, the consulting project "Technical Revolution in Ecological and Efficient Coal Mining and Utilization & Intelligence and Diverse Coordination of Coal-based Energy System," initiated by Chinese Academy of Engineering, puts forward three stages(3.0, 4.0 and 5.0) of China's coal industry development strategy. Aimed at "reduced staff,ultra-low ecological damage, and emission level near to natural gas," breakthroughs should be achieved in the following three key technologies during the China Coal Industry 3.0 stage(2016–2025): including intelligent coal mining, ecological mining, ultra-low emission and environmental protection. This paper focuses on the development trends of the China Coal Industry 3.0 and its support for China Coal Industry 4.0 and 5.0 is analyzed and prospected as well, which may offer technical assistance and strategy orientation for realizing the transformation from traditional coal energy to clean energy.
基金Project(1212010741003)supported by the Ministry of Land and Resources of ChinaProject(SJ08-ZT08)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(NCET-07-0694)supported by Program for University Talents in the NewCentury,China
文摘Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.
文摘China has nearly a hundred mining cities derived from mining development.While mining development has brought about immense achievements in a city’s economic construction,it has also resulted in different levels of damage to the eco-environment of the mining city,leaving behind a lot of subsided wasteland and heavily confining the sustainable development and transformation there.How to restore and exploit the land and eco-environment disrupted by mining development in an effective way,therefore,has become a pressing challenge that Chinese mining cities are facing.In this paper,the planning and construction of Nanhu Eco-city in the suburb of Tangshan City is analyzed as an example.After characterizing the coal-mining subsided lands in Kailuan Tangshan Mine originated in different periods and under different geological mining conditions and evaluating their safety level,the authors try to demonstrate how eco-restoration and comprehensive land exploitation should be implemented by making the best use of available local resources to achieve "economy-society-environment" sustainability and coexistence in a mining city.
文摘To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.
基金supported by the Science and Technology Research Project to Henan Provincial Department of Natural Resources(Henan Natural Resources Letter[2019]373–10)。
文摘The Luanchuan molybdenum polymetallic mine concentration area is rich in mineral resources and has a long history of mining.The environmental impact of long-term mining activities cannot be ignored.It is of great significance to study the ecological risk and the accumulation trends of heavy metals in the soil of mining areas for scientific prevention and control of heavy metal pollution.Taking the Taowanbeigou River Basin in the mine concentration area as the research object,the ecological pollution risk and cumulative effect of heavy metals in the soil of the basin were studied by using the comprehensive pollution index method,potential ecological risk assessment method and geoaccumulation index method.On this basis,the cumulative exceeding years of specific heavy metals were predicted by using the early warning model.The comprehensive potential ecological risk of heavy metals in the soil near the Luanchuan mine concentration area is moderate,and the single element Cd is the main ecological risk factor,with a contribution rate of 53.6%.The overall cumulative degrees of Cu and Pb in the soil are“none-moderate”,Zn and Cd are moderate,Mo has reached an extremely strong cumulative level,Hg,As and Cr risks are not obvious,and the overall cumulative risks order is Mo>Cd>Zn>Cu>Pb>Hg.According to the current accumulation rate and taking the risk screening values for soil contamination of agricultural land as the reference standard,the locations over standard rates of Cu,Zn and Cd will exceed 78%in 90years,and the over standard rate of Pb will reach approximately 57%in 200 years.The cumulative exceeding standard periods of As,Cr and Hg are generally long,which basically indicates that these elements do not pose a significant potential threat to the ecological environment.Mining activities will accelerate the accumulation of heavy metals in soil.With the continuous development of mining activities,the potential pollution risk of heavy metals in the soil of mining areas will also increase.
文摘Coal mining has brought serious damages to neighboring environment and ecosystem,and degradation of ecological environment has seriously influenced life of neighboring residents and sustainable development of coal industry.Destroyed ecological environment of mines in Huainan,Anhui Province was introduced in this study,ecological restoration principles,methods and procedures of mines were explored.The paper proposed that the harmonious development of economy,society and ecological environment must be considered in the ecological restoration.Combing with current situation of local mining areas,practical eco-restoration technical solutions were given by following ecological restoration principles to realize the sustainable development of mines.
文摘The development and exploration mode of coal resource activities in China result in tremendous waste of resources and ecological environment pollution problems. This article analyzed the use of economic theory of externalities of coal mining activities from the point of environmental economics principles, proposed the ecological compensation connotation of coal mining activities, and analyzed the feasibility of the implementation of ecological compensation from economic viewpoint.
文摘Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining.
文摘[Objective] The aim was to study ecological sensitivity in Jinjie mining area. [Method] Taking Jinjie mining area as study object, based on RS and GIS technology, ecological sensitivity in Jinjie mining area was assessed comprehensively from the aspects of soil erosion, desertification and geological disaster by means of multivariate weighted stack method. [Result] Most of Jinjie mining area belonged to extremely high sensitive or high sensitive area which accounted for 73.35% of total area, with little moderate sensitive (19.50%), low sensitive (0.96%) and non-sensitive area (6.19%); the unreasonable development of mineral resources would damage its ecological environment severely. [Conclusion] The study could provide theoretical foundation for the protection of ecological environment in mining area.
文摘In this paper, introducing new remote sensing and geographic information technology to solve the problem of data collection and analysis, this makes the study of ecological risk assessment very quick and accurate. Taking the Shan Xin mining area of the tin mine in Lengshuijiang of Hunan Province as the research object, using the remote sensing image data of three periods in 2005, 2010 and 2015, the remote sensing image is classified carefully and the landscape classification map of the mining area is obtained. The ecological risk index is introduced and the ecological risk values are sampled and interpolated on the ArcGIS platform. The ecological risk spatial distribution map based on the landscape pattern index was obtained. The ecological risk was divided into 5 levels by using the Jenks natural classification method, and each ecological risk grade area was counted. The research results show that: from year 2005 to year 2010, landscape ecological risk trend of the mining area is growing up;the trend rising area of landscape ecological risk is mainly in the southwest and northeast of the Shan Xin mining field;the area of higher and high ecological risk is increasing year by year;and the trend of dispersed development in space is obvious;the development trend of ecological risk in the mining area is rapidly increasing;in 2010 - 2015, the higher and high ecological risk area decrease slightly with the increasing of area of grassland and residential low vulnerability of landscape types;the ecological risk area showed a slow decreasing trend. The research results provide an objective reference for decision making of ecological environment governance.
文摘Through analyzing basic conditions of the "five mining areas" in the Laoqing Mountain of the Dianchi Lake Basin, in Kunming City, South China, the ecological restoration design of "integrating engineering protection and biological restoration, building the landscape ecological security pattern of the Laoqing Mountain" was proposed. Considering the different ecological functional areas, varying engineering measures, greening patterns, and irrigation means were selected for the ecological restoration, including site management, vegetation restoration, management and utilization etc.. These ecological restoration measures will produce favorable ecological benefits, and also take landscape effect and sustainable development into consideration, which will contribute to the ecological restoration of the "five mining areas", and provide a scientific and feasible reference for the ecological restoration in China.
文摘It is well known that the mining industry produces a large amount of derelict land, and causes pollution of water loss and soil erosion as well as other environmental damage in China. As land is under pressure in China, it is now policy to restore or reclaim land despoiled by mining, the aim being to develop sustainable and healthy arable land ecosystems. This paper outlines the principles and approaches of ecological restoration, which have been adopted in Shanxi Province with reference to three typical surface mines. In the research, the principles of ecological engineering and ecological succession are considered as the critical theories of ecological restoration in mine degraded land. Meanwhile, the paper made a comparative research on main links of ecological rebuilding in three surface mines in Shanxi Province, which include new land construction, treatment of toxic substances, control of soil erosion, fertility management, irrigation, ecological planning and the establishment of legislation systems. As the research demonstrated, for successful restoration, new land construction is the fundamental framework, but it must be integrated with ecological engineering including ecological planning, the control of soil erosion and vegetation establishment and ecosystem creation in order to optimise land productivity and soil fertility. In addition, the establishment of the legislation systems and organization of administration are also indispensable aspects of ecological rebuilding in mined land.
文摘Disordered mining activities have destroyed ecosystem of coal mines and threatened local ecological security. Ecological security problems in coal mines mainly involve pollution, biology, ecosystem and landscape. To solve these problems, this study gave countermeasures from the perspective of policy management, technical support and public participation, especially public participation helps restore the damaged eco-environment and guarantee ecological security of coal
文摘According to the present situation of ecological reconstruction of coal mines(ERCM)in Shanxi,and considering the technical requirements of Guidelines for Mine Ecological Environment Protection and Recovery Management Programming,new issues faced by ERCM have been systematically analyzed,including the investigation of ecological destruction status,classification of damaged ecological environment,ecological reconstruction(ER)sustainability,driving force for ER,and so on.On this basis,suggestions for ERCM and advices for the ERCM programming are proposed.
基金supported by the Inner Mongolia Autonomous Region Major Science and Technology Special Project (2019ZD001).
文摘Determining the distributions and sources of heavy metals in soils and assessing ecological risks are fundamental tasks in the control and management of pollution in mining areas.In this study,we selected 244 sampling sites around a typical lead(Pb)and zinc(Zn)mining area in eastern Inner Mongolia Autonomous Region of China and measured the content of six heavy metals,including cuprum(Cu),Zn,Pb,arsenic(As),cadmium(Cd),and chromium(Cr).The ecological risk of heavy metals was comprehensively evaluated using the Geo-accumulation index,Nemerow general pollution index,and potential ecological risk index.The heavy metals were traced using correlation analysis and principal component analysis.The results showed that the highest content of heavy metals was found in 0–5 cm soil layer in the study area.The average content of Zn,As,Pb,Cu,Cr,and Cd was 670,424,235,162,94,and 4 mg/kg,respectively,all exceeding the risk screening value of agricultural soil in China.The areas with high content of soil heavy metals were mainly distributed near the tailings pond.The study area was affected by a combination of multiple heavy metals,with Cd and As reaching severe pollution levels.The three pathways of exposure for carcinogenic and noncarcinogenic risks were ranked as inhalation>oral ingestion>dermal absorption.The heavy metals in the study area posed certain hazards to human health.Specifically,oral ingestion of these heavy metals carried carcinogenic risks for both children and adults,as well as noncarcinogenic risks for children.There were differences in the sources of different heavy metals.The tailings pond had a large impact on the accumulation of Cd,Zn,and Pb.The source of Cr was the soil parent material,the source of As was mainly the soil matrix,and the source of Cu was mainly the nearby Cu ore.The purpose of this study is to more accurately understand the extent,scope,and source of heavy metals pollution near a typical mining area,providing effective help to solve the problem of heavy metals pollution.
文摘The status quo of Ningxia Ningdong Energy-Chemical Base was introduced first, and the ecological civilization and low-carbon economy of Ningxia Ningdong Energy-Chemical Base were analyzed. Problems in the exploitation of resources in Ningxia Ningdong Energy-Chemical Base, and major factors which restrain the development, were discussed. Countermeasures were put forward at last.
文摘Since the sustainable development has been widely acknowledged worldwide,the sustainable campus development based on low-carbon campus construction has already become a tendency of building resource-saving and environment-friendly society.It is a hot and difficult topic in the current campus planning to measure,estimate and construct low-carbon campuses.This paper calculated the ecological footprint of traffic,water,energy and daily life on the campus of Peking University Shenzhen Graduate School,obtained the energy consumption of each item on campus and individual low-carbon activities using questionnaire survey and interview,compared the data with those of other domestic and foreign campuses.The results showed that(1) Ecological footprint of Peking University Shenzhen Graduate School in 2016 was 4,269 hm^2,and per capita ecological footprint was 1.49 hm^2;(2) Total carbon emission in 2016 was 13.4×107 kg,among which power generation and food produced the most carbon emission;(3) Students had strong awareness of low-carbon life,and the main obstacles for low-carbon life were "Hard to change living habits","Greedy vanity",and "No efficiency instruction";(4) In terms of the overall proportion,control of energy consumption is the main approach of reducing campus carbon emission,which is similar to other domestic and foreign campuses.The carbon emission of daily life in Peking University Shenzhen Graduate School was significantly higher than that of foreign campuses,while that of traffic was lower.Suggestions and improvement measures were put forward in view of the existing problems.