Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input ...Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.展开更多
[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was es...[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.展开更多
Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage ...Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.展开更多
基金Supported by Beijing Municipal Education Commission (No.xk100100435) and the Key Research Project of Science andTechnology from Sinopec (No.E03007).
文摘Many applications of principal component analysis (PCA) can be found in dimensionality reduction. But linear PCA method is not well suitable for nonlinear chemical processes. A new PCA method based on im-proved input training neural network (IT-NN) is proposed for the nonlinear system modelling in this paper. Mo-mentum factor and adaptive learning rate are introduced into learning algorithm to improve the training speed of IT-NN. Contrasting to the auto-associative neural network (ANN), IT-NN has less hidden layers and higher training speed. The effectiveness is illustrated through a comparison of IT-NN with linear PCA and ANN with experiments. Moreover, the IT-NN is combined with RBF neural network (RBF-NN) to model the yields of ethylene and propyl-ene in the naphtha pyrolysis system. From the illustrative example and practical application, IT-NN combined with RBF-NN is an effective method of nonlinear chemical process modelling.
文摘[Objective]The study aimed to analyze the influencing factors of low-carbon economy and its mitigation countermeasures in Sichuan Province.[Method]Taking Sichuan Province as an example,an extended STIRPAT model was established firstly,then the impacts of population,economy and technology on carbon emissions from 2000 to 2009 were analyzed econometrically by using the principal component analysis method.Finally,some corresponding countermeasures to reduce carbon dioxide emissions were put forward.[Result]At present,population scale had the greatest influence on carbon emissions in Sichuan Province,then energy consumption per industrial added value and the proportion of industrial added value to GDP.In addition,the influence of population scale on carbon emissions was still greater than that of population structure,and technical factor also has certain explanatory power on carbon emissions.Some countermeasures,like controlling population growth,advocating low-carbon life style and consumption model,paying more attention to the strategic adjustment of industrial structure to gradually reduce the proportion of high-carbon industries,encouraging energy consumption and emissions reduction plus scientific and technological innovation in a new energy technology filed,could be adopted to reduce carbon dioxide emissions,so as to adjust to the development of low-carbon economy in Sichuan Province.[Conclusion]The research could provide references for the establishment of policies for reducing carbon emissions.
基金Supported by the Key Research Subject of Economic Census of Xinjiang Production and Construction Corps(201004)the President Fund for Natural Science Project of Tarim University(TDZKSS09010)+1 种基金the Quality Project of Tarim University(TDZGKC09085)the Quality Project of Tarim University(TDZGTD09004)
文摘Agricultural input and output status in southern Xinjiang,China is introduced,such as lack of agricultural input,low level of agricultural modernization,excessive fertilizer use,serious damage of environment,shortage of water resources,tremendous pressure on ecological balance,insignificant economic and social benefits of agricultural production in southern Xinjiang,agriculture remaining a weak industry,agricultural economy as the economic subject of southern Xinjiang,and backward economic development of southern Xinjiang.Taking the Aksu area as an example,according to the input and output data in the years 2002-2007,input-output model about regional agriculture of the southern Xinjiang is established by principal component analysis.DPS software is used in the process of solving the model.Then,Eviews software is adopted to revise and test the model in order to analyze and evaluate the economic significance of the results obtained,and to make additional explanations of the relevant model.Since the agricultural economic output is seriously restricted in southern Xinjiang at present,the following countermeasures are put forward,such as adjusting the structure of agricultural land,improving the utilization ratio of land,increasing agricultural input,realizing agricultural modernization,rationally utilizing water resources,maintaining eco-environmental balance,enhancing the awareness of agricultural insurance,minimizing the risk and loss,taking the road of industrialization of characteristic agricultural products,and realizing the transfer of surplus labor force.