期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Mo on the continuous cooling transformation behavior of Nb-Ti micro-alloyed low carbon steel
1
作者 LI Bing ZHENG Lei 《Baosteel Technical Research》 CAS 2011年第3期46-50,共5页
The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phas... The effect of molybdenum on the continuous cooling transformation behavior of the micro-alloyed low carbon steel containing niobium and titanium was investigated by a Gleeble 3800 thermo-mechanical simulator. The phase transformation temperature of the steel at various cooling rates was detected. The microstmcture was observed by optical microscope (OM) and scanning electronic microscope ( SEM), and its Vickers hardness was tested. Based on these, its dynamic continuous cooling transformation (CCT) diagrams were determined. The results show that the transformation temperature from deformed austenite to acicular ferrite (AF) is decreased when Mo is added, and the formation of pro- eutectoid ferrite (F) and pearlite (P) is either inhabited or postponed. Mo can also enlarge the range of the cooling rate in forming AF, and refine the microstructure effectively. 展开更多
关键词 micro-alloyed steel mo continuous cooling TRANSFORMATION
下载PDF
Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil 被引量:2
2
作者 Jian Li Hang Su +4 位作者 Feng Chai Dong-mei Xue Li Li Xiang-yang Li Hui-min Meng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期755-766,共12页
To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C 1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic... To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C 1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic soil was investigated. The corrosion rate was evaluated with the mass loss measurements, while the corrosion morphology of surface and cross section of rust layer was observed by scanning electron microscopy. The corrosion products were analyzed by energy- dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy, and the polarization curve was measured using potentiodynamic polarization method. Results indicated that C 1 steel displayed good corrosion resistance in the simulated acidic soil, of which the corrosion rate was only 30% of that of Q235 steel after corrosion for 360 h. The analysis of rust layer showed that lower carbon content in steel could reduce the tendency of micro cell corrosion and appropriate amount of chromium could improve the corrosion potential of metal matrix. Moreover, the analysis of X-ray photoelectron spectroscopy revealed that the chromium enriched in inner rust layer of C1 steel existed mainly in the form of Fe2CrO4, which facilitated the formation of Cr-goethite and improved the protection of corrosion products. 展开更多
关键词 Soil corrosion Grounding grid low-carbon steel Cr micro-alloying Corrosion product - Cr-goethite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部