期刊文献+
共找到4,589篇文章
< 1 2 230 >
每页显示 20 50 100
Commercial Demonstration Unit for Manufacture of Aromatics from Toluene and Methanol with Coproduction of Low-Carbon Olefins Will Be Set Up
1
《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期51-51,共1页
On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperat... On November 29,2013 the Shaanxi Coal Chemicals Technology Engineering Center,Ltd.(SCCTEC),the CNOOC Huizhou Refining and Chemical Company and the SINOPEC Luoyang Engineering Company,Ltd.signed an agreement on cooperation in development of 展开更多
关键词 DMTO Commercial Demonstration Unit for Manufacture of Aromatics from Toluene and Methanol with Coproduction of low-carbon olefins Will Be Set Up BE
下载PDF
Technology for Manufacture of Xylene from Toluene and Methanol with Coproduction of Low-Carbon Olefins Passed Appraisal
2
《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第2期117-117,共1页
On November 30, 2018 “The technology for manufacture of xylene from toluene and methanol with coproduction of low-carbon olefins” jointly developed by the Yanchang Petroleum Group (YPG) and the CAS Dalian Institute ... On November 30, 2018 “The technology for manufacture of xylene from toluene and methanol with coproduction of low-carbon olefins” jointly developed by the Yanchang Petroleum Group (YPG) and the CAS Dalian Institute of Chemical Physics (DICP) had passed the appraisal of research achievements. In order to open up a new In order to open up a new technical route for alkylation of toluene to p-xylene, the technical personnel of YPG and DICP have been jointly engaging in the activities for tackling key problems to set up a 10 kt/a commercial unit for producing xylene through reaction of methanol with toluene along with coproduction of low-carbon olefins. 展开更多
关键词 XYLENE low-carbon olefins
下载PDF
A Probe into Process for Maximization of Low-carbon Olefins via Co-processing of Methanol and Heavy Oil 被引量:1
3
作者 Song Baomei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第2期37-41,共5页
From the viewpoint of process specifics and thermodynamics, this article has put forward a route for maximiza- tion of low-carbon olefins via co-processing of methanol and heavy oil. Catalytic cracking experiments on ... From the viewpoint of process specifics and thermodynamics, this article has put forward a route for maximiza- tion of low-carbon olefins via co-processing of methanol and heavy oil. Catalytic cracking experiments on co-processing of methanol and heavy oil at different ratios in a fixed fluidized bed reactor had been conducted. Test results have revealed that when 12.5% of methanol was blended to the heavy oil a good products distribution and relatively higher yield of low-carbon olefins could be obtained. The overall yield of low-carbon olefins could reach 50.16%, with the yield of ethylene, propylene and butylene equating to 5.47 %, 28.93% and 15.76 %, respectively. 展开更多
关键词 低碳烯烃 甲醇 工艺探讨 最大化 加工 稠油 流化床反应器 催化裂解
下载PDF
Thermodynamic Analysis of Formation of Low-carbon Olefins via Coal Gasification Coupling C_1 Reaction
4
作者 Xu Jing Tu Nan Liu Tong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期24-31,共8页
The complex reaction system of the coal gasification coupling C1 reaction was analyzed based on the principles of thermodynamics. The results show that an increase in the temperature is beneficial to the generation of... The complex reaction system of the coal gasification coupling C1 reaction was analyzed based on the principles of thermodynamics. The results show that an increase in the temperature is beneficial to the generation of hydrocarbons with high carbon-atom contents, in which the alkane yield is higher than the alkene yield. The complex reaction system consisting of C, H_2O, CO, CO2, H_2, C_2H_4, C_3H_6 and C_4H_8 was studied, and the obtained results indicated that when the maximum mole fraction content of C_2―C4 olefins was regarded as the optimized objective function, the optimum temperature was approximately 648 K, the pressure was 0.1 MPa, the feed ratio was approximately 0.6, and the maximum mole fraction content of C_2―C_4 olefins was approximately 28.24%. The thermodynamic simulation and calculation of the complex reaction system can provide a basis for the determination and optimization of actual process conditions and are therefore of great theoretical and practical significance. 展开更多
关键词 复杂反应系统 热力学 煤气化 石蜡 低碳 最佳温度 C2H4 C3H6
下载PDF
Modeling and analysis of air combustion and steam regeneration in methanol to olefins processes
5
作者 Jinqiang Liang Danzhu Liu +1 位作者 Shuliang Xu Mao Ye 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期94-103,共10页
Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However... Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance. 展开更多
关键词 Model Methanol to olefins REGENERATION Greenhouse gas Processes simulation
下载PDF
Boosting CO_(2) hydrogenation to high-value olefins with highly stable performance over Ba and Na co-modified Fe catalyst 被引量:2
6
作者 Joshua Iseoluwa Orege Na Liu +3 位作者 Cederick Cyril Amoo Jian Wei Qingjie Ge Jian Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期614-624,I0014,共12页
CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and main... CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation. 展开更多
关键词 CO_(2)hydrogenation High-value olefins Barium additive Iron carbide Catalytic stability
下载PDF
Reaction characteristics of maximizing light olefins and decreasing methane in C_(5) hydrocarbons catalytic pyrolysis
7
作者 Mei-Jia Liu Gang Wang +3 位作者 Shun-Nian Xu Tao-Ran Zheng Zhong-Dong Zhang Sheng-Bao He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1909-1921,共13页
When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilizatio... When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane. 展开更多
关键词 N-PENTANE 1-Pentene Catalytic pyrolysis Light olefins METHANE
下载PDF
Study on the epoxidation of olefins with H_(2)O_(2)catalyzed by biquaternary ammonium phosphotungstic acid
8
作者 Zijie Zhang Qianyu Zha +3 位作者 Ying Liu Zhibing Zhang Jia Liu Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期146-154,共9页
Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}wit... Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2). 展开更多
关键词 Epoxidation of olefins Phosphotungstic acid CYCLOHEXENE Kinetic study
下载PDF
Targeted Catalytic Cracking to Olefins(TCO):Reaction Mechanism,Production Scheme,and Process Perspectives
9
作者 Youhao Xu Yanfen Zuo +3 位作者 Wenjie Yang Xingtian Shu Wei Chen Anmin Zheng 《Engineering》 SCIE EI CAS CSCD 2023年第11期100-109,共10页
Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their... Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions. 展开更多
关键词 Light olefins Steam cracking Catalytic cracking TCO process Oil processing revolution
下载PDF
Effect of ZrC Modified Graphite on Structure and Properties of Low-carbon Al_(2)O_(3)-C Refractories
10
作者 HU Chen WANG Xing +3 位作者 LIU Zhenglong DING Jun YU Chao DENG Chengji 《China's Refractories》 CAS 2024年第1期18-22,共5页
To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake grap... To address the issues of reduced performance and shortened lifespan during the low-carbonizating process of Al_(2)O_(3)-C refractories,nano-crystalline ZrC modified graphite was prepared using Zr powder and flake graphite as raw materials,with NaCl and NaF mixed salt serving as the medium.The flake graphite was gradually replaced by ZrC modified graphite in the preparation of Al_(2)O_(3)-C refractories,and its impact on the material’s structure and properties was investigated.The results indicate that,compared to samples with only flake graphite,the introduction of 1 mass%to 5 mass%nano-crystalline ZrC modified graphite can significantly enhance the mechanical performance of low-carbon Al_(2)O_(3)-C refractories.When 5 mass%ZrC modified graphite is added,the mechanical properties of the samples are optimal,with the cold modulus of rupture and elastic modulus reaching 22.5 MPa and 65.0 GPa,respectively. 展开更多
关键词 ZRC modified graphite low-carbon Al_(2)O_(3)-C refractories microstrcucture mechanical properties
下载PDF
Performance Evaluation of Low-Carbon and Clean Transformation of China’s Coal Economy
11
作者 Liangfeng Zhu 《Journal of Environmental Science and Engineering(B)》 2024年第1期21-38,共18页
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th... In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income. 展开更多
关键词 Coal economy low-carbon and clean transformation deep processing of coal evolution of asset structure performance appraisal
下载PDF
催化裂化装置多产丙烯助剂Olefins Max的应用试验 被引量:11
12
作者 吴青 周通 何鸣元 《炼油技术与工程》 CAS 北大核心 2004年第5期42-46,共5页
对多产丙烯的助剂OlefinsMax进行了小型和中型试验评价 ,并对该助剂在镇海炼油化工股份有限公司3 .0 0Mt/a催化裂化装置的工业应用试验作了总结 ,结果表明通过在主催化剂中配合使用多产丙烯助剂 ,能明显增加丙烯收率 ,在装置生产负荷为 ... 对多产丙烯的助剂OlefinsMax进行了小型和中型试验评价 ,并对该助剂在镇海炼油化工股份有限公司3 .0 0Mt/a催化裂化装置的工业应用试验作了总结 ,结果表明通过在主催化剂中配合使用多产丙烯助剂 ,能明显增加丙烯收率 ,在装置生产负荷为 80 %时主催化剂中添加 3 %~ 4%的OlefinsMax助剂 ,使装置每天多生产丙烯 5 0t以上 ,且对汽油质量无不利影响 。 展开更多
关键词 催化裂化装置 丙烯 olefinsMax 助催化剂 分子筛
下载PDF
Preparation of modified Ce-SAPO-34 catalysts and their catalytic performances of methanol to olefins 被引量:10
13
作者 Shuxun Tian Shengfu Ji +2 位作者 Dandan Lü Bingyang Bai Qi Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期605-609,共5页
The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic ... The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors. 展开更多
关键词 SAPO-34 METHANOL olefins MODIFICATION
下载PDF
Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe_5C_2 catalyst and why and how to introduce promoters 被引量:9
14
作者 Di Wang Bingxu Chen +2 位作者 Xuezhi Duan De Chen Xinggui Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期911-916,共6页
As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. Howe... As a sustainable and short-flow process, iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps, i.e., Fischer–Tropsch-to-Olefins (FTO), has received increasing attention. However, its fundamental understanding is usually limited by the complex crystal phase composition in addition to the interferences of the promoter effects and inevitable catalyst deactivation. Until recently, the combination of multiple in-situ/ex-situ characterizations and theoretical studies has evidenced H?gg iron carbide (χ-Fe5C2) as the dominant active phase of iron-based Fischer–Tropsch catalysts. This perspective attempts to review and discuss some recent progresses on the nature of χ-Fe5C2catalyst and the crucial effects of promoters on the FTO performance from theoretical and experimental viewpoints, aiming to provide new insights into the rational design of iron-based FTO catalysts. ? 2016 Science Press 展开更多
关键词 Carbides Catalyst deactivation Catalysts Iron olefins Phase composition
下载PDF
Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins 被引量:8
15
作者 Jingchang Zhang Haibin Zhang +2 位作者 Xiuying Yang Zhong Huang Weiliang Cao 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第3期266-270,共5页
ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, t... ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor. 展开更多
关键词 METHANOL olefins ZSM-5 DEACTIVATION REGENERATION
下载PDF
Review of Directly Producing Light Olefins via CO Hydrogenation 被引量:6
16
作者 Chong Wang, Longya Xu, Qingxia WangDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2003年第1期10-16,共7页
Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olef... Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olefins (C_2-C_4) can not reach the desired levels,which is a great challenge to overcome. Beginning with a brief introduction of F-T synthesis, thispaper provides a review of current research, including thermodynamic analysis, the ASF distributionfunction, the reaction performance of CO hydrogenation and slurry reactor studies. The problemscurrently faced by this research area are presented at the end of the article. 展开更多
关键词 light olefin fischer-tropsch synthesis iron based catalyst PROMOTER CO hydrogenation
下载PDF
TiO_2 supported cobalt-manganese nano catalysts for light olefins production from syngas 被引量:3
17
作者 Mostafa Feyzi Asadollah Hassankhani 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期645-652,共8页
Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance... Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO = 1/1 molar feed ratio at 250 ℃ and GHSV = 1300 h-1 un- der atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorlation measurements. 展开更多
关键词 SOL-GEL Fischer-Tropsch synthesis light olefins operational condition
下载PDF
Fe-modified HZSM-5 catalysts for ethanol conversion into light olefins 被引量:3
18
作者 Jiangyin Lu Yancong Liu Na Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期423-427,共5页
A series of Fe/HZSM-5 catalysts with different iron loadings were prepared by impregnation method.Characterization was performed by N2 adsorption-desorption,X-ray diffraction(XRD),NH3 temperature-programmed desorpt... A series of Fe/HZSM-5 catalysts with different iron loadings were prepared by impregnation method.Characterization was performed by N2 adsorption-desorption,X-ray diffraction(XRD),NH3 temperature-programmed desorption(NH3-TPD),temperature-programmed reduction (TPR),temperature-programmed oxidation(TPO)and thermogravimetry(TG)analysis.Iron content in the synthesized samples varied from 1.1 wt%to 20 wt%.The obtained samples have been used for ethanol conversion into light olefins.It was found that the amount of strong acidity at 300 -5 50-C on Fe-modified samples was decreased,going with another new acid site appearance at 550- 600-C and that Fe/HZSM-5 catalysts were highly selective towards light olefins,especially the 9FZ sample.In addition,Fe-modified catalysts suppressed the conversion of ethanol to aromatics and paraffins and enhanced their anti-carbon deposit ability. 展开更多
关键词 BIO-ETHANOL light olefins HZSM-5 Fe modification
下载PDF
Systematic variation of the sodium/sulfur promoter content on carbon-supported iron catalysts for the Fischer–Tropsch to olefins reaction 被引量:2
19
作者 Martin Oschatz Nynke Krans +1 位作者 Jingxiu Xie Krijn P.de Jong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期985-993,共9页
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca... The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure. 展开更多
关键词 Fischer–Tropsch to olefins synthesis C2–C4 olefins Iron catalysts Promoters Carbon supports
下载PDF
Catalytic Cracking of Cycloparaffins Admixed with Olefins:1. Single-Event Microkinetic(SEMK) Modeling 被引量:3
20
作者 Xue Gaoping Weng Huixin +1 位作者 Thybaut Joris W. Marin Guy B. 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期71-80,共10页
Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the... Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the wellknown carbenium ion chemistry, hydride transfer forming and consuming allylic carbenium ions in the aromatization of cycloparaffins are further investigated and differentiated. The reversibility of endocyclic β-scission and cyclization reactions is refined by accounting explicitly for the reacting olefins and resulting cycloparaffins in the corresponding thermodynamics. 24 activation energies for the reactions involved in the cracking of cycloparaffins are obtained by the regression of 15 sets of experimental data upon taking the resulting 37 main cracking products, i. e., responses into account. The enhanced SEMK model can adequately describe the catalytic behavior of 37 main products with conversion and temperature. 展开更多
关键词 catalytic cracking single-event microkinetic model cycloparaffin olefin CATALYSIS
下载PDF
上一页 1 2 230 下一页 到第
使用帮助 返回顶部