Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis wi...Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.展开更多
The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis...The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis, and expert consultation. This evaluation index system can be divided into six first-level indices: the degree to which facilities are intact and functionality standards are reached, the status of operation and management funds, the rationality and degree of advancement of the management team structure, the adaptability and rationality of the water conservancy project management system, the degree of automatization and informationization of the management techniques, and the conduciveness of the exterior environment. The weights for evaluation indices were obtained through the analytic hierarchy process method with consideration of the difference between public welfare and profit-oriented water conservancy projects. This study provides a scientific method for evaluating the positive operation of water conservancy projects.展开更多
Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for ...Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.展开更多
The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this...The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.展开更多
To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance ...To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support.展开更多
In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar o...In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.展开更多
A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., id...A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.展开更多
Operational disposition of electronic countermeasures(ECM)is a hot topic in modern warfare research.Through fully analyzing the characteristics and shortcomings of the traditional operational disposition scheme,a supe...Operational disposition of electronic countermeasures(ECM)is a hot topic in modern warfare research.Through fully analyzing the characteristics and shortcomings of the traditional operational disposition scheme,a super-efficient data envelopment analysis support vector machine(SE-DEA-SVM)method for evaluating the operational configuration scheme of ECM is proposed.Firstly,considering the subjective and objective factors affecting the operational disposition of ECM,the index system of operational disposition scheme is established,and we explain the solution method of terminal indexs.Secondly,the evaluation and algorithm process of SE-DEA-SVM evaluation method are introduced.In this method,the super-efficient data envelopment analysis(SE-DEA)model is used to calculate the weight of index system,and the support vector machine(SVM)method combined with the training samples of evaluation index is used to obtain the input-output model of evaluation value of combat configuration.Finally,by an example(obtaining five schemes),we verify the SE-DEA-SVM evaluation method and analyze the results.The efficiency analysis,comparison analysis,and error analysis of this method are carried out.The results show that this method is more suitable for military evaluation with small samples,and it has high efficiency,applicability,and popularization value.展开更多
The evaluation of network operation and maintenance quality is an important reference for carriers to improve their service.However,the traditional evaluation methods involve so much human participation that it cannot...The evaluation of network operation and maintenance quality is an important reference for carriers to improve their service.However,the traditional evaluation methods involve so much human participation that it cannot cope with the explosive amount of data.Therefore,both the major carriers and researchers are trying to find solutions to evaluate the quality of network operation and maintenance more objectively and accurately.In this paper,we analyze the general process of quality evaluation models for network operation and maintenance.The process has four steps:1)selection of evaluation indicators;2)data process for chosen indicators;3)determination of indicator weights;4)establishment of evaluation models.We further describe the working principle of each step,especially the methods for indicator selection and weight determination.Finally,we review the recently proposed evaluation models and the international stan dards of network operation and maintenance quality evaluation.展开更多
Background:To explore the application effect of Acknowledge-Introduce-Duration-Explanation-Thank you(AIDET)communication mode in reducing anxiety and improving the care services satisfaction of the patients.Methods:Th...Background:To explore the application effect of Acknowledge-Introduce-Duration-Explanation-Thank you(AIDET)communication mode in reducing anxiety and improving the care services satisfaction of the patients.Methods:The 100 cases undergoing cataract daytime operation from February to July 2019 were divided into test group and control group.The test group conducted health education and nursing care for patients during admission,pre-operation,post-operation,and discharge according to the AIDET communication mode.And the control group was given health education and nursing care to the patients according to the traditional way of communication.Results:The difference of the socioeconomic information between these two groups showed no statistical significance.The care services satisfaction score in the test group was statistically higher than that in the control group(P<0.05).The Self-Rating Anxiety Scale(SAS)score in the test group was significantly lower than that in the control group(P<0.01).This result indicated that the patients suffered less anxiety with the AIDET mode of communication.Conclusions:The application of AIDET communication mode to the nursing service of cataract daytime operation can reduce the tension and anxiety of the patients from the treatment and improve their satisfaction to care services.展开更多
Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight d...Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight distribution for operational evaluation was developed, and multiple-forecaster synchronous forecasting was realized while avoiding the instability cased by only one forecaster. Weights were distributed to the forecasters according to each one's forecast precision. An evaluation criterion for the professional level of the forecasters was also built. The eligibility rates of forecast results demonstrate the skill of the forecasters and the stability of their forecasts. With the developed tide forecasting method, the precision and reasonableness of tide forecasting are improved. The application of the present method to tide forecasting at the Huangpu Park tidal station demonstrates the validity of the method.展开更多
This paper put forward an evaluation model with which one can make a comprehensive calculation of enterprise operation status concerning profit ability, repaying capability, economic efficiency and developing potentia...This paper put forward an evaluation model with which one can make a comprehensive calculation of enterprise operation status concerning profit ability, repaying capability, economic efficiency and developing potential; and meanwhile the method of maximal distinction is employed to conduct the data synthesis of several targets and draw the conclusion of evaluation. Finally, a pratical illustration is given in this paper.展开更多
An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluati...An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.展开更多
To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive ...To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.展开更多
The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,th...The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.展开更多
[ Objective] The research aimed to conduct objective evaluation on manner and effect of the artificial hail suppression operation in central Inner Mongolia. [ Method] Depending on analyses of the radar observation dat...[ Objective] The research aimed to conduct objective evaluation on manner and effect of the artificial hail suppression operation in central Inner Mongolia. [ Method] Depending on analyses of the radar observation data, hail shooting data and artificial hail suppression operation data in the middle region of Inner Mongolia ( represented by Huhhot) from 1990 to 2007, and combining capability of the artificial hail suppression operation tool (" 37" anti-aircraft gun), nucleation rate of the catalyst and suitable catalyst volume in hail cloud per unit volume, objective evaluation of the manner and effect for artificial hail suppression operation in the area was obtained. [ Result] It was exacter to distinguish shape and intensity of the hail cloud, but it was uncertain to distinguish height of the hail cloud, when selecting operation target cloud. Operation height was still lower, and perfect seeding height couldn't be attained. Operation occasion was controlled well, but there still were phenomena of the late operation. Shell amounts of the operation were few obviously, needing to increase shell amount or to improve nucleation rate of the catalyst. [ Conclsion] Syntheti- cally, manner of the artificial hail suppression operation in central Inner Mongolia was suitable, and total efficiency was about 85%.展开更多
The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes th...The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes the data source of index. Secondly, the weight of index is determined and the fuzzy comprehensive evaluation model is proposed. Finally, results of instance analysis show that the evaluation model is feasible and effective.展开更多
This work takes the 36 cities from China's low-carbon pilot project as the research object and uses the carbon emission per capita and GDP per capita to categorize the 36 cities into four types to reveal their low-ca...This work takes the 36 cities from China's low-carbon pilot project as the research object and uses the carbon emission per capita and GDP per capita to categorize the 36 cities into four types to reveal their low-carbon development status; these four types are leading cities, developing cities, latecomer cities, and exploring cities. On the basis of an index system that quantitatively describes low-carbon development, this research analyzes the characteristics, development trends, and low-carbon development pathways of the four types of cities. According to the present situation and objectives of national emissions and considering the differences in development stages, challenges, and opportunities for each type of the city, this research presents recommendations for the low-carbon roadmap and the medium- and long-term (by 2030) emission trend routes of different types of regions in China.展开更多
Lifetime isone of the important indicators of automotive proton exchange membrane fuel cells. People used to evaluate the lifetime of vehicular fuel cells by laboratory tests or road tests that usually take thousands ...Lifetime isone of the important indicators of automotive proton exchange membrane fuel cells. People used to evaluate the lifetime of vehicular fuel cells by laboratory tests or road tests that usually take thousands hours even years. In order to achieve a rapid evaluation technique and to seek lifetime extension methods, a lifetime calculation formation was drawn out in consideration of the vehicle driving cycle and the working condition factors. Bench experiments were individually carried out on two fuel-cell stacks same as ones applied on vehicle, and the performance decay rates of the two stacks were obtained under four operation conditions of changing load cycle, start-stop cycle, idling and heavy load. As a result, the predicted lifetimes rather conform to the actual running status in road test. And the research on the fuel cell performance decay rates under different load conditions was also done. Consequently, an unexpected finding was discovered that operating under micro-current has an effect on recovering fuel cell performance. The vehicle fuel cell rapid assessment method only requires four laboratory tests of driving cycle, load cycle, idle operating conditions and heavy load conditions, and the whole process merely lasts less than 250 h. These experimental results can be used to predict the vehicular fuel cell lifetimes on various utility models or driving cycles, therefore to optimize the application model to prolong the fuel cell lifetime. Actually in the experiment, it has already been proved successfully that the fuel cell lifetime could be extended from 1 100 h to 2 600 h by optimizing operating mode. The quick evaluation method is helpful to develop extended life fuel cell and to deplete fuel cell for a longer time.展开更多
This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aim...This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.展开更多
基金supported by the Science and Technology Major Project 2020 of Liaoning Province,China(2020JH1/10100008)National Natural Science Foundation of China(61991404 and 61991400)111 Project 2.0(B08015)。
文摘Based on an analysis of the operational control behavior of operation experts on energy-intensive equipment,this paper proposes an intelligent control method for low-carbon operation by combining mechanism analysis with deep learning,linking control and optimization with prediction,and integrating decision-making with control.This method,which consists of setpoint control,self-optimized tuning,and tracking control,ensures that the energy consumption per tonne is as low as possible,while remaining within the target range.An intelligent control system for low-carbon operation is developed by adopting the end-edge-cloud collaboration technology of the Industrial Internet.The system is successfully applied to a fused magnesium furnace and achieves remarkable results in reducing carbon emissions.
文摘The conditions for the positive operation of water conservancy projects are described in this paper. A scientific and effective evaluation index system was established based on frequency analysis, theoretical analysis, and expert consultation. This evaluation index system can be divided into six first-level indices: the degree to which facilities are intact and functionality standards are reached, the status of operation and management funds, the rationality and degree of advancement of the management team structure, the adaptability and rationality of the water conservancy project management system, the degree of automatization and informationization of the management techniques, and the conduciveness of the exterior environment. The weights for evaluation indices were obtained through the analytic hierarchy process method with consideration of the difference between public welfare and profit-oriented water conservancy projects. This study provides a scientific method for evaluating the positive operation of water conservancy projects.
基金supported by the National Natural Science Foundation of China(Grants No.51569003 and 51579059)the Natural Science Foundation of Guangxi Province(Grant No.2017GXNSFAA198361)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2017052)
文摘Based on the natural disaster risk evaluation mode, a quantitative danger degree evaluation model was developed to evaluate the danger degree of earth dam reservoir staged operation in the flood season. A formula for the overtopping risk rate of the earth dam reservoir staged operation was established, with consideration of the joint effect of flood and wind waves in the flood sub-seasons with the Monte Carlo method, and the integrated overtopping risk rate for the whole flood season was obtained via the total probability approach. A composite normalized function was used to transform the dam overtopping risk rate into the danger degree, on a scale of 0-1. Danger degree gradating criteria were divided by four significant characteristic values of the dam overtopping rate, and corresponding guidelines for danger evaluation are explained in detail in this paper. Examples indicated that the dam overtopping danger degree of the Chengbihe Reservoir in China was 0.33-0.57, within the range of moderate danger level, and the flood-limiting water level (FLWL) can be adjusted to 185.00 m for the early and main flood seasons, and 185.00-187.50 m for the late flood season. The proposed quantitative model offers a theoretical basis for determination of the value of the danger degree of an earth dam reservoir under normal operation as well as the optimal scheduling scheme for the reservoir in each stage of the flood season.
基金financially supported by the National Natural Science Foundation of China (Nos.50874014 and 51974023)the Fundamental Research Funds for Central Universities (No.FRF-BR-17-029A)。
文摘The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.
基金Project(2017QNA21)supported by Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘To ensure compacted backfilling, it is essential to ensure the reliability of the performance of a solid backfill support, key equipment for integrating backfilling and mining. To evaluate the backfilling performance of a backfill support, the concept of backfill and operation properties is proposed in this study. Moreover, it is elaborated in terms of five aspects, namely, structural property, supporting property, tamping property, mechanical response property, and geological adaptation property, which are specifically reflected by 14 indexes including the supporting intensity and vertical roof gap. Seven separate evaluation indexes are selected to build a backfill and operation properties based system for evaluating the design schemes of the backfill support via a multi-index comprehensive evaluation method; then, the evaluation method and process together with measures to control the backfill and operation properties are proposed. By using this system, 11 schemes for optimizing the ZC5200/14.5/3 backfill support at Zhaizhen Coal Mine are evaluated, and scheme #10 is found to show superior vertical roof gap and other backfill and operation properties, thus demonstrating the reasonability of the evaluation system. On this basis, the backfill support research framework of designing initial scheme, optimizing design scheme, selecting the best evaluation indexes, evaluating optimizing scheme, and evaluating operation properties is built; this should serve as an important reference for further studies on the roof controlling performance of a backfill support.
基金National Key Research and Development Program of China(2017YFC1404700,2018YFC1506905)Open Research Program of the State Key Laboratory of Severe Weather(2018LASW-B09,2018LASW-B08)+7 种基金Science and Technology Planning Project of Guangdong Province,China(2019B020208016,2018B020207012,2017B020244002)National Natural Science Foundation of China(41375038)Special Scientific Research Fund of Meteorological Public Welfare Profession of China(GHY201506006)2017-2019Meteorological Forecasting Key Technology Development Special Grant(YBGJXM(2017)02-05)Guangdong Science&Technology Plan Project(2015A020217008)Zhejiang Province Major Science and Technology Special Project(2017C03035)Scientific and Technological Research Projects of Guangdong Meteorological Service(GRMC2018M10)Natural Science Foundation of Guangdong Province(2018A030313218)
文摘In this paper,a quantitative precipitation estimation based on the hydrometeor classification(HCA-QPE)algorithm was proposed for the first operational S band dual-polarization radar upgraded from the CINRAD/SA radar of China.The HCA-QPE algorithm,localized Colorado State University-Hydrometeor Identification of Rainfall(CSUHIDRO)algorithm,the Joint Polarization Experiment(JPOLE)algorithm,and the dynamic Z-R relationships based on variational correction QPE(DRVC-QPE)algorithm were evaluated with the rainfall events from March 1 to October 30,2017 in Guangdong Province.The results indicated that even though the HCA-QPE algorithm did not use the observed rainfall data for correction,its estimation accuracy was better than that of the DRVC-QPE algorithm when the rainfall rate was greater than 5 mm h-1;and the stronger the rainfall intensity,the greater the QPE improvement.Besides,the HCA-QPE algorithm worked better than the localized CSU-HIDRO and JPOLE algorithms.This study preliminarily evaluated the improved accuracy of QPE by a dual-polarization radar system modified from CINRAD-SA radar.
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R&D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘A comprehensive evaluation model based on improved set pair analysis is established. Considering the complexity in decision-making process, the model combines the certainties and uncertainties in the schemes, i.e., identical degree, different degree and opposite degree. The relations among different schemes are studied, and the traditional way of solving uncertainty problem is improved. By using the gray correlation to determine the difference degree, the problem of less evaluation indexes and inapparent linear relationship is solved. The difference between the evaluation parameters is smaller in both the fuzzy comprehensive evaluation model and fuzzy matter-element method, and the dipartite degree of the evaluation result is unobvious. However, the difference between each integrated connection degree is distinct in the improved set pair analysis. Results show that the proposed method is feasible and it obtains better effects than the fuzzy comprehensive evaluation method and fuzzy matter-element method.
基金This work was supported by the Military Postgraduate Funding Project(JY2019C055)Hunan Province Postgraduate Scientific Research Innovation Project(CX20200029).
文摘Operational disposition of electronic countermeasures(ECM)is a hot topic in modern warfare research.Through fully analyzing the characteristics and shortcomings of the traditional operational disposition scheme,a super-efficient data envelopment analysis support vector machine(SE-DEA-SVM)method for evaluating the operational configuration scheme of ECM is proposed.Firstly,considering the subjective and objective factors affecting the operational disposition of ECM,the index system of operational disposition scheme is established,and we explain the solution method of terminal indexs.Secondly,the evaluation and algorithm process of SE-DEA-SVM evaluation method are introduced.In this method,the super-efficient data envelopment analysis(SE-DEA)model is used to calculate the weight of index system,and the support vector machine(SVM)method combined with the training samples of evaluation index is used to obtain the input-output model of evaluation value of combat configuration.Finally,by an example(obtaining five schemes),we verify the SE-DEA-SVM evaluation method and analyze the results.The efficiency analysis,comparison analysis,and error analysis of this method are carried out.The results show that this method is more suitable for military evaluation with small samples,and it has high efficiency,applicability,and popularization value.
基金supported in part by the Jiangsu Provincial Natural Science Foundation of China under Grant No.BK20171447ZTE Industry-Academia-Research Cooperation FundsNanjing University of Posts and Telecommunications under Grant Nos.NY215045 and NY219084.
文摘The evaluation of network operation and maintenance quality is an important reference for carriers to improve their service.However,the traditional evaluation methods involve so much human participation that it cannot cope with the explosive amount of data.Therefore,both the major carriers and researchers are trying to find solutions to evaluate the quality of network operation and maintenance more objectively and accurately.In this paper,we analyze the general process of quality evaluation models for network operation and maintenance.The process has four steps:1)selection of evaluation indicators;2)data process for chosen indicators;3)determination of indicator weights;4)establishment of evaluation models.We further describe the working principle of each step,especially the methods for indicator selection and weight determination.Finally,we review the recently proposed evaluation models and the international stan dards of network operation and maintenance quality evaluation.
文摘Background:To explore the application effect of Acknowledge-Introduce-Duration-Explanation-Thank you(AIDET)communication mode in reducing anxiety and improving the care services satisfaction of the patients.Methods:The 100 cases undergoing cataract daytime operation from February to July 2019 were divided into test group and control group.The test group conducted health education and nursing care for patients during admission,pre-operation,post-operation,and discharge according to the AIDET communication mode.And the control group was given health education and nursing care to the patients according to the traditional way of communication.Results:The difference of the socioeconomic information between these two groups showed no statistical significance.The care services satisfaction score in the test group was statistically higher than that in the control group(P<0.05).The Self-Rating Anxiety Scale(SAS)score in the test group was significantly lower than that in the control group(P<0.01).This result indicated that the patients suffered less anxiety with the AIDET mode of communication.Conclusions:The application of AIDET communication mode to the nursing service of cataract daytime operation can reduce the tension and anxiety of the patients from the treatment and improve their satisfaction to care services.
文摘Through analysis of operational evaluation factors for tide forecasting, the relationship between the evaluation factors and the weights of forecasters was examined. A tide forecasting method based on dynamic weight distribution for operational evaluation was developed, and multiple-forecaster synchronous forecasting was realized while avoiding the instability cased by only one forecaster. Weights were distributed to the forecasters according to each one's forecast precision. An evaluation criterion for the professional level of the forecasters was also built. The eligibility rates of forecast results demonstrate the skill of the forecasters and the stability of their forecasts. With the developed tide forecasting method, the precision and reasonableness of tide forecasting are improved. The application of the present method to tide forecasting at the Huangpu Park tidal station demonstrates the validity of the method.
文摘This paper put forward an evaluation model with which one can make a comprehensive calculation of enterprise operation status concerning profit ability, repaying capability, economic efficiency and developing potential; and meanwhile the method of maximal distinction is employed to conduct the data synthesis of several targets and draw the conclusion of evaluation. Finally, a pratical illustration is given in this paper.
文摘An approach of training working staff of power system operation mode based on state evaluation is proposed. In terms of knowledge features of power system operation mode, we studied a training method based on evaluation of learning state. This training method makes individual learning for different individual condition to give them ability to grasp learning points quickly, evaluate real-time learning effect, update learning style in time and summarize problems after one learning stage, so that learners can master professional knowledge in constant summaries and feedbacks. Obvious effects can be obtained on discontinuous learning time that trainees can master basic theories associated with their working and operations adapted to practical work quickly.
基金supported by the Military Scientific Research Program(41401020301).
文摘To address the issue of rule premise combination explosion in the construction of the traditional complete conjunctive belief rule base(BRB),this paper introduces an orthogonal design method to reduce the conjunctive BRB.The reasoning method based on reduced conjunctive BRB is designed with the help of the conversion technology from conjunctive BRB to disjunctive BRB.Finally,the operational mission effectiveness evaluation is taken as an example to verify the proposed method.The results show that the method proposed in this paper is feasible and effective.
文摘The comprehensive benefit evaluation of the existing building energy efficient renovation project cannot be separated from the scientific and effective evaluation mechanism.Based on the value-added life perspective,this paper analyzes the implementation subject,standard,system and principle of the comprehensive benefit evaluation of the existing building energy efficient renovation project.It plans the process of comprehensive benefit evaluation,and builds a scientific and reasonable operation platform of evaluation system,with a view to promoting the effective implementation of the comprehensive benefit evaluation of existing building energy-saving retrofits.
基金Supported by Science and Technology Innovation Item of Inner Mongolia Weather Bureau(nmqxkjcx200811)
文摘[ Objective] The research aimed to conduct objective evaluation on manner and effect of the artificial hail suppression operation in central Inner Mongolia. [ Method] Depending on analyses of the radar observation data, hail shooting data and artificial hail suppression operation data in the middle region of Inner Mongolia ( represented by Huhhot) from 1990 to 2007, and combining capability of the artificial hail suppression operation tool (" 37" anti-aircraft gun), nucleation rate of the catalyst and suitable catalyst volume in hail cloud per unit volume, objective evaluation of the manner and effect for artificial hail suppression operation in the area was obtained. [ Result] It was exacter to distinguish shape and intensity of the hail cloud, but it was uncertain to distinguish height of the hail cloud, when selecting operation target cloud. Operation height was still lower, and perfect seeding height couldn't be attained. Operation occasion was controlled well, but there still were phenomena of the late operation. Shell amounts of the operation were few obviously, needing to increase shell amount or to improve nucleation rate of the catalyst. [ Conclsion] Syntheti- cally, manner of the artificial hail suppression operation in central Inner Mongolia was suitable, and total efficiency was about 85%.
基金supported by the Natural Science Foundation of China(71704184)Projects of the of the National Social Science Foundation of China(15GJ003-245)Science Foundation of Equipment Research(JJ20172A05095)
文摘The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes the data source of index. Secondly, the weight of index is determined and the fuzzy comprehensive evaluation model is proposed. Finally, results of instance analysis show that the evaluation model is feasible and effective.
文摘This work takes the 36 cities from China's low-carbon pilot project as the research object and uses the carbon emission per capita and GDP per capita to categorize the 36 cities into four types to reveal their low-carbon development status; these four types are leading cities, developing cities, latecomer cities, and exploring cities. On the basis of an index system that quantitatively describes low-carbon development, this research analyzes the characteristics, development trends, and low-carbon development pathways of the four types of cities. According to the present situation and objectives of national emissions and considering the differences in development stages, challenges, and opportunities for each type of the city, this research presents recommendations for the low-carbon roadmap and the medium- and long-term (by 2030) emission trend routes of different types of regions in China.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA05Z125)
文摘Lifetime isone of the important indicators of automotive proton exchange membrane fuel cells. People used to evaluate the lifetime of vehicular fuel cells by laboratory tests or road tests that usually take thousands hours even years. In order to achieve a rapid evaluation technique and to seek lifetime extension methods, a lifetime calculation formation was drawn out in consideration of the vehicle driving cycle and the working condition factors. Bench experiments were individually carried out on two fuel-cell stacks same as ones applied on vehicle, and the performance decay rates of the two stacks were obtained under four operation conditions of changing load cycle, start-stop cycle, idling and heavy load. As a result, the predicted lifetimes rather conform to the actual running status in road test. And the research on the fuel cell performance decay rates under different load conditions was also done. Consequently, an unexpected finding was discovered that operating under micro-current has an effect on recovering fuel cell performance. The vehicle fuel cell rapid assessment method only requires four laboratory tests of driving cycle, load cycle, idle operating conditions and heavy load conditions, and the whole process merely lasts less than 250 h. These experimental results can be used to predict the vehicular fuel cell lifetimes on various utility models or driving cycles, therefore to optimize the application model to prolong the fuel cell lifetime. Actually in the experiment, it has already been proved successfully that the fuel cell lifetime could be extended from 1 100 h to 2 600 h by optimizing operating mode. The quick evaluation method is helpful to develop extended life fuel cell and to deplete fuel cell for a longer time.
基金the Shandong Province Key Research and Development Program under Grant No.2021SFGC0601.
文摘This paper presents an improved hybrid algorithm and a multi-objective model to tackle the scheduling problem of multiple Automated Guided Vehicles(AGVs)under the composite operation mode.The multi-objective model aims to minimize the maximum completion time,the total distance covered by AGVs,and the distance traveled while empty-loaded.The improved hybrid algorithm combines the improved genetic algorithm(GA)and the simulated annealing algorithm(SA)to strengthen the local search ability of the algorithm and improve the stability of the calculation results.Based on the characteristics of the composite operation mode,the authors introduce the combined coding and parallel decoding mode and calculate the fitness function with the grey entropy parallel analysis method to solve the multi-objective problem.The grey entropy parallel analysis method is a combination of the grey correlation analysis method and the entropy weighting method to solve multi-objective solving problems.A task advance evaluation strategy is proposed in the process of crossover and mutation operator to guide the direction of crossover and mutation.The computational experiments results show that the improved hybrid algorithm is better than the GA and the genetic algorithm with task advance evaluation strategy(AEGA)in terms of convergence speed and solution results,and the effectiveness of the multi-objective solution is proved.All three objectives are optimized and the proposed algorithm has an optimization of 7.6%respectively compared with the GA and 3.4%compared with the AEGA in terms of the objective of maximum completion time.