Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte...Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.展开更多
From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling an...From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.展开更多
Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a c...Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.展开更多
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo...Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.展开更多
Flexible load can optimize the load curve,which is an important means to promote renewable energy consumption.The peculiarities of electricity,heat,cooling and gas loads are analyzed in this paper,considering the fuzz...Flexible load can optimize the load curve,which is an important means to promote renewable energy consumption.The peculiarities of electricity,heat,cooling and gas loads are analyzed in this paper,considering the fuzzy degree of human perception for water temperature,and the characteristic model of hot water load is established.Considering the fuzzy degree of human perception of ambient temperature,the characteristic model of cooling load is established by using PMV and PPD index.Meanwhile,considering four combinations of cut load,translatable load,transferable load and alternative load,and considering the coupling relationship of composite parts,different response models of load are established respectively.With the minimum cost of the system,including operation and compensation costs as the objective function,the optimization scheduling model of the regional integrated energy system is established,and the Gurobi solver is used for simulation analysis to solve the optimal output and load response curve of each piece of equipment.The results show that the load curve can be optimized,the flexible regulation ability of the regional integrated energy system can be enhanced,the energy loss of the system can be reduced,and the wind power consumption ability of the system can be increased by considering the integrated demand response.展开更多
Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with ...Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems,and low-carbon technologies have attracted extensive attention.However,the potential of such technologies to reduce carbon emissions is constrained by various factors,such as space,operational environment,and safety concerns.As an essential territorial natural resource,underground space can provide large-scale and stable space support for existing low-carbon technologies.Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality,and hence,warrants further exploration.First,a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented.Second,the features of underground space and its low carbon potential are summarized.Moreover,a framework for the underground space based integrated energy system is proposed,including system configuration,operational mechanisms,and the resulting benefits.Finally,the research prospect and key challenges required to be settled are highlighted.展开更多
The electricity-gas transformation problem and related intrinsic mechanisms are considered.First,existing schemes for the optimization of electricity-gas integrated energy systems are analyzed through consideration of...The electricity-gas transformation problem and related intrinsic mechanisms are considered.First,existing schemes for the optimization of electricity-gas integrated energy systems are analyzed through consideration of the relevant literature,and an Electricity Hub(EH)for electricity-gas coupling is proposed.Then,the distribution mechanism in the circuit of the considered electricity-gas integrated system is analyzed.Afterward,a mathematical model for the natural gas pipeline is elaborated according to the power relationship,a node power flow calculation method,and security requirements.Next,the coupling relationship between them is implemented,and dedicated simulations are carried out.Through experimental data,it is found that after 79 data iterations,the optimization results of power generation and gas purchase cost in the new system converge to$54,936 in total,which is consistent with the data obtained by an existing centralized optimization scheme.However,the new proposed optimization scheme is found to be more flexible and convenient.展开更多
A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the...A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the IES is divided into two stages in the TSDRO-based coordinated scheduling model.The first stage addresses the day-ahead optimal scheduling problem of the IES under deterministic forecasting information,while the sec-ond stage uses a distributionally robust optimization method to determine the intraday rescheduling problem under high-order uncertainties,building upon the results of the first stage.The scheduling model also considers col-laboration among the electricity,thermal,and gas networks,focusing on economic operation and carbon emissions.The flexibility of these networks and the energy gradient utilization of hydrogen units during operation are also incor-porated into the model.To improve computational efficiency,the nonlinear formulations in the TSDRO-based coordinated scheduling model are properly linearized to obtain a Mixed-Integer Linear Programming model.The Column-Constraint Generation(C&CG)algorithm is then employed to decompose the scheduling model into a mas-ter problem and subproblems.Through the iterative solution of the master problem and subproblems,an efficient analysis of the coordinated scheduling model is achieved.Finally,the effectiveness of the proposed TSDRO-based coordinated scheduling model is verified through case studies.The simulation results demonstrate that the proposed TSDRO-based coordinated scheduling model can effectively accomplish the optimal scheduling task while consider-ing the uncertainty and flexibility of the system.Compared with traditional methods,the proposed TSDRO-based coordinated scheduling model can better balance conservativeness and robustness.展开更多
为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能...为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。展开更多
As more and more distributed renewable energy resources connected to electric power grids,the conventional power system evolves into an integrated energy grid(IEG)in order to satisfy various types of energy demands.Th...As more and more distributed renewable energy resources connected to electric power grids,the conventional power system evolves into an integrated energy grid(IEG)in order to satisfy various types of energy demands.This paper proposes a model of the coordinated scheduling of energy resources(CSoERs)for distributed district heating and cooling systems(DHCs)in an IEG.The model takes into consideration both the dispatchable grid-connected generators and distributed renewable energy resources,such as wind energy,solar energy and natural gas.The objective is to minimize the operation costs in the IEG in order to satisfy not only the electrical loads but also the heating loads and cooling loads.Furthermore,an energy storage system for heating loads and cooling loads is also developed in the DHCs to improve the operation reliability in the distributed DHCs.Detailed simulation studies are carried out to verify the effectiveness of the CSoERs under two different operation scenarios:grid-connected scenario and stand-alone scenario.Simulation results demonstrate that the performance of the CSoERs contributes to significant energy saving and reliability operation in both grid-connected scenario and standalone scenario in the IEG.展开更多
基金King Saud University for funding this research through the Researchers Supporting Program Number(RSPD2024R704),King Saud University,Riyadh,Saudi Arabia.
文摘Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.
基金supported in part by the National Natural Science Foundation of China(51977127)Shanghai Municipal Science and Technology Commission(19020500800)“Shuguang Program”(20SG52)Shanghai Education Development Foundation and Shanghai Municipal Education Commission.
文摘From the perspective of a community energy operator,a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads.The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system(IES)before and after;the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme,taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of heat and cooling power,and solves the adjusted output of each controllable device.The simulation results show that the optimal scheduling of controllable loads effectively reduces the comprehensive operating costs of community IES;the two-stage optimal scheduling model can meet the energy demand of customers while effectively and timely suppressing the random fluctuations on both sides of the source and load during the intra-day stage,realizing the economic and smooth operation of IES.
基金supported by the Science and Technology Project of State Grid Inner Mongolia East Power Co.,Ltd.:Research on Carbon Flow Apportionment and Assessment Methods for Distributed Energy under Dual Carbon Targets(52664K220004).
文摘Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation,this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side.A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation,with the overarching goal of optimizing the system for low-carbon operation.To begin with,an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms.Drawing from this analysis,a model is devised to represent the adjustable resources on the charge-storage side,predicated on the principles of electro-thermal coupling within the energy system.Subsequently,the dissimilarities in the confidence intervals of renewable energy generation are considered,leading to the proposition of a flexible upper threshold for the confidence interval.Building on this,a low-carbon dispatch model is established for the integrated energy system,factoring in the margin allowed by the adjustable resources.In the final phase,a simulation is performed on a regional electric heating integrated energy system.This simulation seeks to assess the impact of source-load-storage coordination on the system’s low-carbon operation across various scenarios of reduction margin reserves.The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation.Through harmonized orchestration of source,load,and storage elements,it expands the utilization scope for renewable energy,safeguards the economic efficiency of system operations under low-carbon emission conditions,and empirically validates the soundness and efficacy of the proposed approach.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(SGSDJY00GPJS2100135).
文摘Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.
基金supported by the National Natural Science Foundation of China(51577086)Jiangsu Key University Science Research Project(19KJA510012)+1 种基金Six talent peaks project in Jiangsu Province(TD-XNY004)Jiangsu Qinglan Project.
文摘Flexible load can optimize the load curve,which is an important means to promote renewable energy consumption.The peculiarities of electricity,heat,cooling and gas loads are analyzed in this paper,considering the fuzzy degree of human perception for water temperature,and the characteristic model of hot water load is established.Considering the fuzzy degree of human perception of ambient temperature,the characteristic model of cooling load is established by using PMV and PPD index.Meanwhile,considering four combinations of cut load,translatable load,transferable load and alternative load,and considering the coupling relationship of composite parts,different response models of load are established respectively.With the minimum cost of the system,including operation and compensation costs as the objective function,the optimization scheduling model of the regional integrated energy system is established,and the Gurobi solver is used for simulation analysis to solve the optimal output and load response curve of each piece of equipment.The results show that the load curve can be optimized,the flexible regulation ability of the regional integrated energy system can be enhanced,the energy loss of the system can be reduced,and the wind power consumption ability of the system can be increased by considering the integrated demand response.
基金supported by the consulting research project of Chinese Academy of Engineering(Grant No.2022-XY-76)National Natural Science Foundation of China(Grant No.52177112).
文摘Cities play a vital role in social development,which contribute to more than 70%of global carbon emission.Low-carbon city construction and decarbonization of the energy sector are the critical strategies to cope with the increasingly serious climate change problems,and low-carbon technologies have attracted extensive attention.However,the potential of such technologies to reduce carbon emissions is constrained by various factors,such as space,operational environment,and safety concerns.As an essential territorial natural resource,underground space can provide large-scale and stable space support for existing low-carbon technologies.Integrating underground space and low-carbon technologies could be a promising approach towards carbon neutrality,and hence,warrants further exploration.First,a comprehensive review of the existing low-carbon technologies including the technical bottlenecks is presented.Second,the features of underground space and its low carbon potential are summarized.Moreover,a framework for the underground space based integrated energy system is proposed,including system configuration,operational mechanisms,and the resulting benefits.Finally,the research prospect and key challenges required to be settled are highlighted.
文摘The electricity-gas transformation problem and related intrinsic mechanisms are considered.First,existing schemes for the optimization of electricity-gas integrated energy systems are analyzed through consideration of the relevant literature,and an Electricity Hub(EH)for electricity-gas coupling is proposed.Then,the distribution mechanism in the circuit of the considered electricity-gas integrated system is analyzed.Afterward,a mathematical model for the natural gas pipeline is elaborated according to the power relationship,a node power flow calculation method,and security requirements.Next,the coupling relationship between them is implemented,and dedicated simulations are carried out.Through experimental data,it is found that after 79 data iterations,the optimization results of power generation and gas purchase cost in the new system converge to$54,936 in total,which is consistent with the data obtained by an existing centralized optimization scheme.However,the new proposed optimization scheme is found to be more flexible and convenient.
基金supported in part by the National Natural Science Foundation(51977181,52077180)Natural Science Foundation of Sichuan Province(2022NSFSC0027)+2 种基金Fok Ying-Tong Education Foundation of China(171104)14th Five-year Major Science and Technology Research Project of CRRC(2021CXZ021-2)Key research and development project of China National Railway Group Co.,Ltd(N2022J016-B).
文摘A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the IES is divided into two stages in the TSDRO-based coordinated scheduling model.The first stage addresses the day-ahead optimal scheduling problem of the IES under deterministic forecasting information,while the sec-ond stage uses a distributionally robust optimization method to determine the intraday rescheduling problem under high-order uncertainties,building upon the results of the first stage.The scheduling model also considers col-laboration among the electricity,thermal,and gas networks,focusing on economic operation and carbon emissions.The flexibility of these networks and the energy gradient utilization of hydrogen units during operation are also incor-porated into the model.To improve computational efficiency,the nonlinear formulations in the TSDRO-based coordinated scheduling model are properly linearized to obtain a Mixed-Integer Linear Programming model.The Column-Constraint Generation(C&CG)algorithm is then employed to decompose the scheduling model into a mas-ter problem and subproblems.Through the iterative solution of the master problem and subproblems,an efficient analysis of the coordinated scheduling model is achieved.Finally,the effectiveness of the proposed TSDRO-based coordinated scheduling model is verified through case studies.The simulation results demonstrate that the proposed TSDRO-based coordinated scheduling model can effectively accomplish the optimal scheduling task while consider-ing the uncertainty and flexibility of the system.Compared with traditional methods,the proposed TSDRO-based coordinated scheduling model can better balance conservativeness and robustness.
文摘为解决综合能源生产单元(integrated energy production unit,IEPU)中燃煤机组碳捕集过程的高能耗问题,同时应对新能源不确定性对运行调度带来的挑战,该文提出一种考虑太阳能辅助碳捕集技术的IEPU随机低碳调度策略,旨在实现IEPU的多能协同与低碳运行。首先,对含太阳能辅助碳捕集热电联产单元(combined heat and power based on solar-assisted carbon capture,CHP-SACC)的能量流动与运行机理进行分析,并构建其运行模型;其次,考虑风电不确定性带来的影响,提出一种基于条件最小二乘生成对抗网络(conditional-least squares generative adversarial networks,C-LSGANs)的可再生能源场景生成方法来提高场景的生成质量;然后,考虑异质能流耦合约束、多元设备运行约束以及能量平衡约束等,以最大化系统运行收益期望为目标构建IEPU随机低碳调度模型;最后,在算例仿真中设置不同的运行策略验证所提低碳转型方案的有效性,并分析了能源价格、设备容量等因素对系统运行收益的影响。
基金supported by the State Key Program of National Natural Science of China(Grant No.51437006)Guangdong Innovative Research Team Program(No.201001 NO 104744201).
文摘As more and more distributed renewable energy resources connected to electric power grids,the conventional power system evolves into an integrated energy grid(IEG)in order to satisfy various types of energy demands.This paper proposes a model of the coordinated scheduling of energy resources(CSoERs)for distributed district heating and cooling systems(DHCs)in an IEG.The model takes into consideration both the dispatchable grid-connected generators and distributed renewable energy resources,such as wind energy,solar energy and natural gas.The objective is to minimize the operation costs in the IEG in order to satisfy not only the electrical loads but also the heating loads and cooling loads.Furthermore,an energy storage system for heating loads and cooling loads is also developed in the DHCs to improve the operation reliability in the distributed DHCs.Detailed simulation studies are carried out to verify the effectiveness of the CSoERs under two different operation scenarios:grid-connected scenario and stand-alone scenario.Simulation results demonstrate that the performance of the CSoERs contributes to significant energy saving and reliability operation in both grid-connected scenario and standalone scenario in the IEG.