This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service ...This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.展开更多
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther...The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.展开更多
Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical...Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.展开更多
In this paper,we study a model on joint decisions of scheduling and subcontracting, in which jobs(orders) can be either processed by parallel machines at the manufacturer in-house or subcontracted to a subcontractor.T...In this paper,we study a model on joint decisions of scheduling and subcontracting, in which jobs(orders) can be either processed by parallel machines at the manufacturer in-house or subcontracted to a subcontractor.The manufacturer needs to determine which jobs should be produced in-house and which jobs should be subcontracted.Furthermore,it needs to determine a production schedule for jobs to be produced in-house.We discuss five classical scheduling objectives as production costs.For each problem with different objective functions,we give optimality conditions and propose dynamic programming algorithms.展开更多
A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. Thi...A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. This scheduling problem is NP-hard in general. We divide it into eight subcases. Except for the following two subcases: (1) b≥ an, max{m, B} 〈 n; (2) a1 ≤ b ≤ an, m ≤ B 〈 n, for all other subcases, their NP-hardness was proved or pointed out, corresponding approximation algorithms were conducted and their worst-case performances were estimated. In all these approximation algorithms, the Multifit and PTAS algorithms were respectively used, as the jobs were scheduled in m identical parallel machines.展开更多
This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,proce...This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,processing time and delivery time first rule is designed to determine a certain machine for each job,and the largest difference between delivery time and release date first rule is designed to sequence the jobs scheduled on the same machine,and then a novel algorithm for the scheduling problem is built.To evaluate the performance of the proposed algorithm,a lower bound for the problem is proposed.The accuracy of the proposed algorithm is tested based on the data with problem size varying from 200 jobs to 600 jobs.The computational results indicate that the average relative error between the proposed algorithm and the lower bound is only 0.667%,therefore the solutions obtained by the proposed algorithm are very accurate.展开更多
This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parall...This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parallel machines is aj≡a (j∈N), and the processing time of job Jj is bj(j∈N) on a batch processorM. We take makespan (Cmax) as our minimization objective. In this paper, for the problem of FSMP-BI (m identical parallel machines on the first stage and a batch processor on the second stage), based on the algorithm given by Sung and Choung for the problem of 1 |ri, BI|Cmax under the constraint of the given processing sequence, we develop an optimal dynamic programming Algorithm H1 for it in max {O(nlogn), O(nB)} time. A max {O(nlogn) , O(nB)}time symmetric Algorithm H2 is given then for the problem of BI-FSMP (a batch processor on the first stage and m identical parallel machines on the second stage).展开更多
A parallel related uniform machine system consists of m machines with different processing speeds. The speed of any machine is independent on jobs. In this paper, we consider online scheduling for jobs with arbitrary ...A parallel related uniform machine system consists of m machines with different processing speeds. The speed of any machine is independent on jobs. In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. The jobs appear over list in terms of order. An order includes the processing size and releasing time of a job. For this model, an algorithm with competitive ratio of 12 is addressed in this paper.展开更多
This paper considers a reentrant scheduling problem on parallel primary machines with a remote server machine, which is required to carry out the setup operation. In this problem, each job has three operations. The fi...This paper considers a reentrant scheduling problem on parallel primary machines with a remote server machine, which is required to carry out the setup operation. In this problem, each job has three operations. The first and last operations are performed by the same primary machine, implying the reentrance, and the second operation is processed on the single server machine. The order of jobs is predetermined in our context. The challenge is to assign jobs to the primary machines to minimize the makespan. We develop a genetic algorithm(GA) to solve this problem. Based on a simple strategy of assigning jobs in batches on the parallel primary machines, the standardized random key vector representation is employed to split the jobs into batches. Comparisons among the proposed algorithm, the branch and bound(BB) algorithm and the heuristic algorithm, coordinated scheduling(CS), which is only one heuristic algorithm to solve this problem in the literature, are made on the benchmark data. The computational experiments show that the proposed genetic algorithm outperforms the heuristic CS and the maximum relative improvement rate in the makespan is 1.66%.展开更多
In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Ma...In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated, and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every s≥1.展开更多
In this paper, we investigate the problem of semi-on-line scheduling n jobs on m identical parallel machines under the assumption that the ordering of the jobs by processing time is known and the jobs have arbitrary r...In this paper, we investigate the problem of semi-on-line scheduling n jobs on m identical parallel machines under the assumption that the ordering of the jobs by processing time is known and the jobs have arbitrary release times. Our aim is to minimize the maximum completion time. An ordinal algorithm is investigated and its worst case ratio is analyzed.展开更多
In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best exis...In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best existing result of 12.展开更多
The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and ...The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and the total completion time of scheduled jobs plus the total rejection penalty.For each objective, polynomial time algorithms based on dynamic programming were presented.展开更多
In recent years, it has been difficult for manufactures and suppliers to forecast demand from a market for a given product precisely. Therefore, it has become important for them to cope with fluctuations in demand. Fr...In recent years, it has been difficult for manufactures and suppliers to forecast demand from a market for a given product precisely. Therefore, it has become important for them to cope with fluctuations in demand. From this viewpoint, the problem of planning or scheduling in production systems can be regarded as a mathematical problem with stochastic elements. However, in many previous studies, such problems are formulated without stochastic factors, treating stochastic elements as deterministic variables or parameters. Stochastic programming incorporates such factors into the mathematical formulation. In the present paper, we consider a multi-product, discrete, lotsizing and scheduling problem on parallel machines with stochastic demands. Under certain assumptions, this problem can be formulated as a stochastic integer programming problem. We attempt to solve this problem by a scenario aggregation method proposed by Rockafellar and Wets. The results from computational experiments suggest that our approach is able to solve large-scale problems, and that, under the condition of uncertainty, incorporating stochastic elements into the model gives better results than formulating the problem as a deterministic model.展开更多
This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations ...This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.展开更多
In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives:...In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.展开更多
A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely no...A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.展开更多
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust opt...The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust optimization model by minimizing the maximum tardiness in the worst case scenario over all jobs. Unlike the traditional stochastic programming model which requires exact distributions, our model only needs the information of due date intervals. The worst case scenario for a given sequence that belongs to a set containing only n scenarios is proved, where n is the number of jobs. Then, the model is simplified and reformulated as an equivalent mixed 0-1 integer linear programming(MILP) problem. To solve the MILP problems efficiently, a heuristic approach is proposed based on a robust dominance rule. The experimental results show that the proposed method has the advantages of robustness and high calculating efficiency, and it is feasible for large-scale problems.展开更多
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
基金Project supported by the National Natural Science Foundation of China (No. 10271110) and the Teaching and Research Award Pro-gram for Outstanding Young Teachers in Higher Education, Institu-tions of MOE, China
文摘This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.
文摘The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.
基金National Natural Science Foundation of China(No.51405403)the Fundamental Research Funds for the Central Universities,China(No.2682014BR019)the Scientific Research Program of Education Bureau of Sichuan Province,China(No.12ZB322)
文摘Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.
基金Supported by the National Natural Science Foundation of China(70731160015)Supported the National Natural Science Foundation of Jiangsu Province(yw06037)
文摘In this paper,we study a model on joint decisions of scheduling and subcontracting, in which jobs(orders) can be either processed by parallel machines at the manufacturer in-house or subcontracted to a subcontractor.The manufacturer needs to determine which jobs should be produced in-house and which jobs should be subcontracted.Furthermore,it needs to determine a production schedule for jobs to be produced in-house.We discuss five classical scheduling objectives as production costs.For each problem with different objective functions,we give optimality conditions and propose dynamic programming algorithms.
基金Project supported by the Science and Technology Development Fund of Shanghai University(Grant No.A.10-0101-06-0017)
文摘A hybrid two-stage flowshop scheduling problem was considered which involves m identical parallel machines at Stage 1 and a burn-in processor M at Stage 2, and the makespan was taken as the minimization objective. This scheduling problem is NP-hard in general. We divide it into eight subcases. Except for the following two subcases: (1) b≥ an, max{m, B} 〈 n; (2) a1 ≤ b ≤ an, m ≤ B 〈 n, for all other subcases, their NP-hardness was proved or pointed out, corresponding approximation algorithms were conducted and their worst-case performances were estimated. In all these approximation algorithms, the Multifit and PTAS algorithms were respectively used, as the jobs were scheduled in m identical parallel machines.
基金supported by the National Natural Science Foundation of China (7087103290924021+2 种基金70971035)the National High Technology Research and Development Program of China (863 Program) (2008AA042901)Anhui Provincial Natural Science Foundation (11040606Q27)
文摘This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,processing time and delivery time first rule is designed to determine a certain machine for each job,and the largest difference between delivery time and release date first rule is designed to sequence the jobs scheduled on the same machine,and then a novel algorithm for the scheduling problem is built.To evaluate the performance of the proposed algorithm,a lower bound for the problem is proposed.The accuracy of the proposed algorithm is tested based on the data with problem size varying from 200 jobs to 600 jobs.The computational results indicate that the average relative error between the proposed algorithm and the lower bound is only 0.667%,therefore the solutions obtained by the proposed algorithm are very accurate.
基金Sponsored by the Innovation Foundation of Shanghai University(Grant No.A.10-0101-07 -406)NNSF of China(Grant No.60874039)
文摘This paper considers a hybrid two-stage flow-shop scheduling problem with m identical parallel machines on one stage and a batch processor on the other stage. The processing time of job Jj on any of m identical parallel machines is aj≡a (j∈N), and the processing time of job Jj is bj(j∈N) on a batch processorM. We take makespan (Cmax) as our minimization objective. In this paper, for the problem of FSMP-BI (m identical parallel machines on the first stage and a batch processor on the second stage), based on the algorithm given by Sung and Choung for the problem of 1 |ri, BI|Cmax under the constraint of the given processing sequence, we develop an optimal dynamic programming Algorithm H1 for it in max {O(nlogn), O(nB)} time. A max {O(nlogn) , O(nB)}time symmetric Algorithm H2 is given then for the problem of BI-FSMP (a batch processor on the first stage and m identical parallel machines on the second stage).
文摘A parallel related uniform machine system consists of m machines with different processing speeds. The speed of any machine is independent on jobs. In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. The jobs appear over list in terms of order. An order includes the processing size and releasing time of a job. For this model, an algorithm with competitive ratio of 12 is addressed in this paper.
基金Supported by National Natural Science Foundation of China(No.61271374)Beijing Natural Science Foundation(No.4122068)
文摘This paper considers a reentrant scheduling problem on parallel primary machines with a remote server machine, which is required to carry out the setup operation. In this problem, each job has three operations. The first and last operations are performed by the same primary machine, implying the reentrance, and the second operation is processed on the single server machine. The order of jobs is predetermined in our context. The challenge is to assign jobs to the primary machines to minimize the makespan. We develop a genetic algorithm(GA) to solve this problem. Based on a simple strategy of assigning jobs in batches on the parallel primary machines, the standardized random key vector representation is employed to split the jobs into batches. Comparisons among the proposed algorithm, the branch and bound(BB) algorithm and the heuristic algorithm, coordinated scheduling(CS), which is only one heuristic algorithm to solve this problem in the literature, are made on the benchmark data. The computational experiments show that the proposed genetic algorithm outperforms the heuristic CS and the maximum relative improvement rate in the makespan is 1.66%.
基金Project (No. Y605316) supported by the Natural Science Foundationof Zhejiang Province, China and the Natural Science Foundation of the Education Department of Zhejiang Province (No. 20060578), China
文摘In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated, and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every s≥1.
文摘In this paper, we investigate the problem of semi-on-line scheduling n jobs on m identical parallel machines under the assumption that the ordering of the jobs by processing time is known and the jobs have arbitrary release times. Our aim is to minimize the maximum completion time. An ordinal algorithm is investigated and its worst case ratio is analyzed.
文摘In this paper, we consider online scheduling for jobs with arbitrary release times on the parallel uniform machine system. An algorithm with competitive ratio of 7.4641 is addressed, which is better than the best existing result of 12.
文摘The permutation flow shop scheduling problems with deteriorating jobs and rejection on dominant machines were studied.The objectives are to minimize the makespan of scheduled jobs plus the total rejection penalty and the total completion time of scheduled jobs plus the total rejection penalty.For each objective, polynomial time algorithms based on dynamic programming were presented.
文摘In recent years, it has been difficult for manufactures and suppliers to forecast demand from a market for a given product precisely. Therefore, it has become important for them to cope with fluctuations in demand. From this viewpoint, the problem of planning or scheduling in production systems can be regarded as a mathematical problem with stochastic elements. However, in many previous studies, such problems are formulated without stochastic factors, treating stochastic elements as deterministic variables or parameters. Stochastic programming incorporates such factors into the mathematical formulation. In the present paper, we consider a multi-product, discrete, lotsizing and scheduling problem on parallel machines with stochastic demands. Under certain assumptions, this problem can be formulated as a stochastic integer programming problem. We attempt to solve this problem by a scenario aggregation method proposed by Rockafellar and Wets. The results from computational experiments suggest that our approach is able to solve large-scale problems, and that, under the condition of uncertainty, incorporating stochastic elements into the model gives better results than formulating the problem as a deterministic model.
文摘This study explored the concurrent scheduling of machines, tools, and tool transporter(TT) with alternative machines in a multi-machine flexible manufacturing system(FMS), taking into mind the tool transfer durations for minimization of the makespan(MSN). When tools are expensive, just a single copy of every tool kind is made available for use in the FMS system. Because the tools are housed in a central tool magazine(CTM), which then distributes and delivers them to many machines, because there is no longer a need to duplicate the tools in each machine, the associated costs are avoided. Choosing alternative machines for job operations(jb-ons), assigning tools to jb-ons, sequencing jb-ons on machines, and arranging allied trip activities, together with the TT’s loaded trip times and deadheading periods, are all challenges that must be overcome to achieve the goal of minimizing MSN. In addition to a mixed nonlinear integer programming(MNLIP) formulation for this simultaneous scheduling problem, this paper suggests a symbiotic organisms search algorithm(SOSA) for the problem’s solution. This algorithm relies on organisms’ symbiotic interaction strategies to keep living in an ecosystem. The findings demonstrate that SOSA is superior to the Jaya algorithm in providing solutions and that using alternative machines for operations helps bring down MSN.
文摘In this paper, we propose a multi-criteria machine-schedules decision making method that can be applied to a produc-tion environment involving several unrelated parallel machines and we will focus on three objectives: minimizing makespan, total flow time, and total number of tardy jobs. The decision making method consists of three phases. In the first phase, a mathematical model of a single machine scheduling problem, of which the objective is a weighted sum of the three objectives, is constructed. Such a model will be repeatedly solved by the CPLEX in the proposed Multi-Objective Simulated Annealing (MOSA) algorithm. In the second phase, the MOSA that integrates job clustering method, job group scheduling method, and job group – machine assignment method, is employed to obtain a set of non-dominated group schedules. During this phase, CPLEX software and the bipartite weighted matching algorithm are used repeatedly as parts of the MOSA algorithm. In the last phase, the technique of data envelopment analysis is applied to determine the most preferable schedule. A practical example is then presented in order to demonstrate the applicability of the proposed decision making method.
基金supported by the National Natural Science Foundation of China (7060103570801062)
文摘A self-adaptive large neighborhood search method for scheduling n jobs on m non-identical parallel machines with mul- tiple time windows is presented. The problems' another feature lies in oversubscription, namely not all jobs can be scheduled within specified scheduling horizons due to the limited machine capacity. The objective is thus to maximize the overall profits of processed jobs while respecting machine constraints. A first-in- first-out heuristic is applied to find an initial solution, and then a large neighborhood search procedure is employed to relax and re- optimize cumbersome solutions. A machine learning mechanism is also introduced to converge on the most efficient neighborhoods for the problem. Extensive computational results are presented based on data from an application involving the daily observation scheduling of a fleet of earth observing satellites. The method rapidly solves most problem instances to optimal or near optimal and shows a robust performance in sensitive analysis.
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.
基金supported by the National Natural Science Foundation of China(61503211,U1660202)。
文摘The single machine scheduling problem which involves uncertain job due dates is one of the most important issues in the real make-to-order environment. To deal with the uncertainty, this paper establishes a robust optimization model by minimizing the maximum tardiness in the worst case scenario over all jobs. Unlike the traditional stochastic programming model which requires exact distributions, our model only needs the information of due date intervals. The worst case scenario for a given sequence that belongs to a set containing only n scenarios is proved, where n is the number of jobs. Then, the model is simplified and reformulated as an equivalent mixed 0-1 integer linear programming(MILP) problem. To solve the MILP problems efficiently, a heuristic approach is proposed based on a robust dominance rule. The experimental results show that the proposed method has the advantages of robustness and high calculating efficiency, and it is feasible for large-scale problems.