The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. T...The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. The concentration of methanol as its characteristic component is mostly lower than 3%. Its production and water quality change seasonally. It is mainly produced in late autumn,winter,and early spring when temperature is low. In the low-concentration methanol-containing wastewater,the content of organic matter,suspended solids and salts and COD value are high,and it is acidic. According to the physical and chemical properties of methanol such as easily dissolving in water,dissolving in most organic solvents,and having strong molecular polarity,laboratory experiments were made to study the difficulties of using high-temperature rectification,biodegradation,membrane filtration and organic oxidation technology to treat low-concentration methanol in the wastewater as well as the feasibility of industrial application. Ultraviolet catalytic oxidation technology has the advantages of high treatment efficiency,no secondary pollution,and no addition of treatment agent. After the low-concentration methanol-containing wastewater was treated by ultraviolet catalytic oxidation for 90 min,methanol concentration in the wastewater reduced from about 3% to around 0. 1%,thereby rapidly and efficiently degrading methanol in the wastewater. Based on the experimental parameters,a pilot device of ultraviolet catalytic oxidation was developed and used in the continuous treatment of the wastewater. When the flow rate of inflow was 500 L/h,the intensity of UV light was 2 k W,and hydraulic retention time was 60 min,methanol could be removed completely from the wastewater with the methanol concentration of about 0. 3%. This study provides a method for the treatment of low-concentration methanol-containing wastewater of a gas field,and also provides an experimental basis for the efficient degradation of organic wastewater.展开更多
The extraction of uranium (U) from U-bearing wastewater is of paramount importance for mitigating negative environmental impacts and recovering U resources. Microbial reduction of soluble hexavalent uranium (U(VI)) to...The extraction of uranium (U) from U-bearing wastewater is of paramount importance for mitigating negative environmental impacts and recovering U resources. Microbial reduction of soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) holds immense potential for this purpose, but its practical application has been impeded by the challenges associated with managing U-bacterial mixtures and the biotoxicity of U. To address these challenges, we present a novel spontaneous microbial electrochemical (SMEC) method that spatially decoupled the microbial oxidation reaction and the U(VI) reduction reaction. Our results demonstrated stable and efficient U extraction with net electrical energy production, which was achieved with both synthetic and real wastewater. U(VI) removal occurred via diffusion-controlled U(VI)-to-U(IV) reduction-precipitation at the cathode, and the UIVO_(2) deposited on the surface of the cathode contributed to the stability and durability of the abiotic U(VI) reduction. Metagenomic sequencing revealed the formation of efficient electroactive communities on the anodic biofilm and enrichment of the key functional genes and metabolic pathways involved in electron transfer, energy metabolism, the TCA cycle, and acetate metabolism, which indicated the ectopic reduction of U(VI) at the cathode. Our study represents a significant advancement in the cost-effective recovery of U from U(VI)-bearing wastewater and may open a new avenue for sustainable uranium extraction.展开更多
文摘The low-concentration methanol-containing wastewater of a gas field mainly consists of the dehydrated water from natural gas,the water at the bottom of a rectifying tower,and the water used to clear tanks and pipes. The concentration of methanol as its characteristic component is mostly lower than 3%. Its production and water quality change seasonally. It is mainly produced in late autumn,winter,and early spring when temperature is low. In the low-concentration methanol-containing wastewater,the content of organic matter,suspended solids and salts and COD value are high,and it is acidic. According to the physical and chemical properties of methanol such as easily dissolving in water,dissolving in most organic solvents,and having strong molecular polarity,laboratory experiments were made to study the difficulties of using high-temperature rectification,biodegradation,membrane filtration and organic oxidation technology to treat low-concentration methanol in the wastewater as well as the feasibility of industrial application. Ultraviolet catalytic oxidation technology has the advantages of high treatment efficiency,no secondary pollution,and no addition of treatment agent. After the low-concentration methanol-containing wastewater was treated by ultraviolet catalytic oxidation for 90 min,methanol concentration in the wastewater reduced from about 3% to around 0. 1%,thereby rapidly and efficiently degrading methanol in the wastewater. Based on the experimental parameters,a pilot device of ultraviolet catalytic oxidation was developed and used in the continuous treatment of the wastewater. When the flow rate of inflow was 500 L/h,the intensity of UV light was 2 k W,and hydraulic retention time was 60 min,methanol could be removed completely from the wastewater with the methanol concentration of about 0. 3%. This study provides a method for the treatment of low-concentration methanol-containing wastewater of a gas field,and also provides an experimental basis for the efficient degradation of organic wastewater.
基金supported by the National Natural Science Foundation of China(Nos.52200202 and 42077352).
文摘The extraction of uranium (U) from U-bearing wastewater is of paramount importance for mitigating negative environmental impacts and recovering U resources. Microbial reduction of soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) holds immense potential for this purpose, but its practical application has been impeded by the challenges associated with managing U-bacterial mixtures and the biotoxicity of U. To address these challenges, we present a novel spontaneous microbial electrochemical (SMEC) method that spatially decoupled the microbial oxidation reaction and the U(VI) reduction reaction. Our results demonstrated stable and efficient U extraction with net electrical energy production, which was achieved with both synthetic and real wastewater. U(VI) removal occurred via diffusion-controlled U(VI)-to-U(IV) reduction-precipitation at the cathode, and the UIVO_(2) deposited on the surface of the cathode contributed to the stability and durability of the abiotic U(VI) reduction. Metagenomic sequencing revealed the formation of efficient electroactive communities on the anodic biofilm and enrichment of the key functional genes and metabolic pathways involved in electron transfer, energy metabolism, the TCA cycle, and acetate metabolism, which indicated the ectopic reduction of U(VI) at the cathode. Our study represents a significant advancement in the cost-effective recovery of U from U(VI)-bearing wastewater and may open a new avenue for sustainable uranium extraction.