The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embe...The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embedded in a large array of point charges. For comparison, the interaction of metal atoms with perfect regular oxygen site of MgO (001) surface was also calculated. As regards these metal atoms adsorbed at perfect oxygen sites of MgO (001) surface, Cu, Ag and Au are very weakly bonded to the surface of MgO; Ni, Pd and Pt, on the other hand, exhibit strong interactions with perfect oxygen sites of MgO (001) surface; the large adsorption energy shows that there exist strong bonds formed between these metal atoms with surface oxygen sites. For the metal atoms adsorbed at edge and corner sites, the adsorption energy is much increased, consistent with our previous study of CO and Cl2 adsorption on MgO (001) surface. This illustrates that the low-coordinated sites, especially corner site, are more advantageous positions for those metal atoms adsorbed on MgO (001) surface. The Mulliken population analysis indicates that the electron transferred from MgO to the metal atoms were increased with the decrease of the coordination numbers, which may be one of the reasons for changing catalytic efficiency and selectivity of the metal particles supported by MgO.展开更多
Developing highly stable and active non-Pt oxygen reduction reaction(ORR)electrocatalysts for power generation device raises great concerns and remains a challenge.Here,we report novel truncated Pd tetrahedrons(T-Pd-T...Developing highly stable and active non-Pt oxygen reduction reaction(ORR)electrocatalysts for power generation device raises great concerns and remains a challenge.Here,we report novel truncated Pd tetrahedrons(T-Pd-Ths)enclosed by{111}facets with excellent uniformity,which have both low-coordinated surface sites and distinct lattice distortions that would induce“local strain”.In alkaline electrolyte,the T-Pd-Ths/C achieves remarkable ORR specific/mass activity(SA/MA)of 2.46 mA·cm^(−2)/1.69 A·mgPd^(−1),which is 12.3/16.9 and 10.7/14.1 times higher than commercial Pd/C and Pt/C,respectively.The T-Pd-Ths/C also exhibits high in-situ carbon monoxide(CO)tolerance and 50,000 cycles durability with an activity loss of 7.69%and morphological stability.The rotating ring-disk electrode(RRDE)measurements show that a 4-electron process occurs on T-PdThs/C.Theoretical calculations demonstrate that the low-coordinated surface sites contribute largely to the enhancement of ORR activity.In actual direct methanol fuel cell(DMFC)device,the T-Pd-Ths/C delivers superior open-circuit voltage(OCV)and peak power density(PPD)to commercial Pt/C from 25 to 80℃,and the maximum PPD can reach up to 163.7 mW·cm−2.This study demonstrates that the T-Pd-Ths/C holds promise as alternatives to Pt for ORR in DMFC device.展开更多
Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers...Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers are intended to satisfy axial symmetry.Here,we report four four-coordinate Dy^(Ⅲ)SMMs based on bis(arylamido)dysprosium building block{Dy(N^(RR’))2(μ-Cl)_(2)K}(N^(RR’)={N(SiMe_(3))(C_(6)H_(3)iPr_(2)-2,6)}^(−)),with two strong Dy–N and twoweak Dy–Cl bonds.Through fine-tuning of axial anisotropy,the SMM with the largest N–Dy–N angle of 139.24(15)°displayed magnetic hysteresis with a coercive field(H_(c))of 18.6 kOe at 2 K,which kept opening up to 35 K.Alternating current susceptibility measurement showed that the relaxation energy barrier reached as high as 1578 K,which is among the highest reported Dy^(Ⅲ)SMMs.Ab initio calculations revealed strong anisotropy and crystal-field axiality of the compound,despite the low symmetry,and provided a synthetically workable approach to construct high-performance SMMs useful in applications such as digital processing,transport electronics,quantumcomputing,and ultra-high-density data storage.展开更多
Low-coordinated single atom catalysts compared to M-N4 are appealing in optimized electronic structure for CO_(2)electroreduction,but the preparation is still very challenging.Herein,a novel single Ni atom catalyst wi...Low-coordinated single atom catalysts compared to M-N4 are appealing in optimized electronic structure for CO_(2)electroreduction,but the preparation is still very challenging.Herein,a novel single Ni atom catalyst with Ni-N_(1)-C_(3)configuration is in-situ evolved on curved carbon nanotubes.The obtained Ni-N_(1)-C_(3)catalyst exhibits a superior CO Faradaic efficiency of 97%and turnover frequency of 2,890 h^(−1)at−0.9 V versus the reversible hydrogen electrode,as well as long-term stability over 45 h.High current densities exceeding 200 mA·cm^(−2)and CO Faradaic efficiency of 99%are achieved in flow-cell.Moreover,in-situ potentialand time-dependent Raman spectra identify the key intermediates of*COOH and*CO during CO_(2)-to-CO conversion.Theoretical calculations reveal that the upward-shifted d-band center and charge-rich Ni sites of Ni-N_(1)-C_(3)facilitate the electron transfer to*COOH and thus reduce the*COOH formation energy barrier.This work demonstrates a strategy for modulating the coordination environment for efficient CO_(2)reduction.展开更多
Photocatalytic carbon dioxide(CO_(2))to carbon monoxide(CO)offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand.Herein,we constructed a Co single-atom catalyst with inten...Photocatalytic carbon dioxide(CO_(2))to carbon monoxide(CO)offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand.Herein,we constructed a Co single-atom catalyst with intentional low-coordination environment design on porous ZnO(denoted as Co1/ZnO).Impressively,Co1/ZnO exhibited a remarkable activity with a CO yield rate of 22.25 mmol·g^(-1)·h^(-1) and a selectivity of 80.2%for CO_(2) photoreduction reactions under visible light.The incorporation of single Co atoms provided an additional photo-generated electron transfer channel,which suppressed the carrier recombination of photocatalysts.Moreover,the unsaturated Co active sites were capable to adsorb CO_(2) molecule spontaneously,thus facilitating the activation of CO_(2) molecule during CO_(2) reduction course.展开更多
Prussian whites(PWs) with a three-dimensional framework can accommodate the insertion and extraction of ions with large radius,which have been widely used in potassium ion batteries.However,PWs show the poor cycling p...Prussian whites(PWs) with a three-dimensional framework can accommodate the insertion and extraction of ions with large radius,which have been widely used in potassium ion batteries.However,PWs show the poor cycling performance and inferior rate ability because of high coordinated water.In this work,PWs with different water content were synthesized via a coprecipitation method by controlling the reaction temperature.The sample with low-coordination water prohibits the best electrochemical performance.It shows a high capacity of 120.5 mAh/g at 100 mA/g for potassium-ion batteries(KIBs).It also exhibits a good rate performance,displaying a capacity of 73.2 mAh/g at 500 mA/g.展开更多
Developing efficient pH-universal hydrogen evolution reaction(HER)catalysts is critical in the field of water electrolysis,however,which is severely hampered by the sluggish kinetics in alkaline media.Herein,a rutheni...Developing efficient pH-universal hydrogen evolution reaction(HER)catalysts is critical in the field of water electrolysis,however,which is severely hampered by the sluggish kinetics in alkaline media.Herein,a ruthenium(Ru)incorporation induced vacancy engineering strategy is firstly proposed to precisely construct oxygen vacancy(V_(O))-riched cobalt-ruthenium metaphosphate(CRPO)for high-efficiency pH-universal HER.The V_(O) modifies the electronic structure,improves the superficial hydrophilic and gas spillover capacity,it also reduces the coordination number of Ru atoms and regulates the coordination environment.Theoretical calculations indicate that Ru tends to adsorb H_(2)O and H^(*),whereas V_(O) tends to adsorb OH^(-),which greatly promotes the H_(2)O adsorption and the dissociation of HO-H bond.Ultimately,CRPO-2 exhibits remarkable HER performance,the mass activity is about 18.34,21.73,and 38.07 times higher than that of Pt/C in acidic,neutral,and alkaline media,respectively,at the same time maintain excellent stability.Our findings may pave a new avenue for the rational design of electrocatalysts toward pH-universal water electrolysis.展开更多
基金This research has been supported by the Foundation of State Key Laboratory of Structural Chemistry the National Natural+3 种基金Science Foundation of China (29973006) and Administration of Science and Technology of Fujian province (2001J018)
文摘The adsorption of metal atoms, Ni, Pd, Pt, Cu, Ag and Au, at low-coordinated edge and corner oxygen sites of MgO (001) surface has been studied theoretically by using density functional method with cluster models embedded in a large array of point charges. For comparison, the interaction of metal atoms with perfect regular oxygen site of MgO (001) surface was also calculated. As regards these metal atoms adsorbed at perfect oxygen sites of MgO (001) surface, Cu, Ag and Au are very weakly bonded to the surface of MgO; Ni, Pd and Pt, on the other hand, exhibit strong interactions with perfect oxygen sites of MgO (001) surface; the large adsorption energy shows that there exist strong bonds formed between these metal atoms with surface oxygen sites. For the metal atoms adsorbed at edge and corner sites, the adsorption energy is much increased, consistent with our previous study of CO and Cl2 adsorption on MgO (001) surface. This illustrates that the low-coordinated sites, especially corner site, are more advantageous positions for those metal atoms adsorbed on MgO (001) surface. The Mulliken population analysis indicates that the electron transferred from MgO to the metal atoms were increased with the decrease of the coordination numbers, which may be one of the reasons for changing catalytic efficiency and selectivity of the metal particles supported by MgO.
基金the National Natural Science Foundation of China(No.21571038)Education Department of Guizhou Province(No.2021312)+4 种基金Foundation of Guizhou Province(No.2019-5666)Science Foundation for Aftergraduated Students of Guizhou Province(No.YJSCXJH2020045)State Key Laboratory of Coal Mine Disaster Dynamics and Control(Chongqing University,No.2011DA105287-ZR202101)State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,No.202009)the Open Fund of the Key Lab of Organic Optoelectronics&Molecular Engineering(Tsinghua University)。
文摘Developing highly stable and active non-Pt oxygen reduction reaction(ORR)electrocatalysts for power generation device raises great concerns and remains a challenge.Here,we report novel truncated Pd tetrahedrons(T-Pd-Ths)enclosed by{111}facets with excellent uniformity,which have both low-coordinated surface sites and distinct lattice distortions that would induce“local strain”.In alkaline electrolyte,the T-Pd-Ths/C achieves remarkable ORR specific/mass activity(SA/MA)of 2.46 mA·cm^(−2)/1.69 A·mgPd^(−1),which is 12.3/16.9 and 10.7/14.1 times higher than commercial Pd/C and Pt/C,respectively.The T-Pd-Ths/C also exhibits high in-situ carbon monoxide(CO)tolerance and 50,000 cycles durability with an activity loss of 7.69%and morphological stability.The rotating ring-disk electrode(RRDE)measurements show that a 4-electron process occurs on T-PdThs/C.Theoretical calculations demonstrate that the low-coordinated surface sites contribute largely to the enhancement of ORR activity.In actual direct methanol fuel cell(DMFC)device,the T-Pd-Ths/C delivers superior open-circuit voltage(OCV)and peak power density(PPD)to commercial Pt/C from 25 to 80℃,and the maximum PPD can reach up to 163.7 mW·cm−2.This study demonstrates that the T-Pd-Ths/C holds promise as alternatives to Pt for ORR in DMFC device.
基金supported by the National Natural Science Foundation of China(21971006)National Key R&D Program of China(2018YFA0306003,2017YFA0206301,and 2017YFA0204903)High-Performance Computing Platform at Peking University.
文摘Symmetryandaxialityarethought tobeguides toward the pursuit of high energy barrier and blocking temperature for thedysprosium(Ⅲ)(Dy^(Ⅲ))single-molecule magnets(SMMs).The Dy^(Ⅲ)complexeswith low coordination numbers are intended to satisfy axial symmetry.Here,we report four four-coordinate Dy^(Ⅲ)SMMs based on bis(arylamido)dysprosium building block{Dy(N^(RR’))2(μ-Cl)_(2)K}(N^(RR’)={N(SiMe_(3))(C_(6)H_(3)iPr_(2)-2,6)}^(−)),with two strong Dy–N and twoweak Dy–Cl bonds.Through fine-tuning of axial anisotropy,the SMM with the largest N–Dy–N angle of 139.24(15)°displayed magnetic hysteresis with a coercive field(H_(c))of 18.6 kOe at 2 K,which kept opening up to 35 K.Alternating current susceptibility measurement showed that the relaxation energy barrier reached as high as 1578 K,which is among the highest reported Dy^(Ⅲ)SMMs.Ab initio calculations revealed strong anisotropy and crystal-field axiality of the compound,despite the low symmetry,and provided a synthetically workable approach to construct high-performance SMMs useful in applications such as digital processing,transport electronics,quantumcomputing,and ultra-high-density data storage.
基金supported by the National Natural Science Foundation of China(Nos.21908090,22008101,22108243,and 22168023)the Natural Science Foundation of Jiangxi Province(No.20212BAB213038)Y.F.acknowledges the 2020 Nanchang University Scholarship for Doctoral Visiting Abroad.
文摘Low-coordinated single atom catalysts compared to M-N4 are appealing in optimized electronic structure for CO_(2)electroreduction,but the preparation is still very challenging.Herein,a novel single Ni atom catalyst with Ni-N_(1)-C_(3)configuration is in-situ evolved on curved carbon nanotubes.The obtained Ni-N_(1)-C_(3)catalyst exhibits a superior CO Faradaic efficiency of 97%and turnover frequency of 2,890 h^(−1)at−0.9 V versus the reversible hydrogen electrode,as well as long-term stability over 45 h.High current densities exceeding 200 mA·cm^(−2)and CO Faradaic efficiency of 99%are achieved in flow-cell.Moreover,in-situ potentialand time-dependent Raman spectra identify the key intermediates of*COOH and*CO during CO_(2)-to-CO conversion.Theoretical calculations reveal that the upward-shifted d-band center and charge-rich Ni sites of Ni-N_(1)-C_(3)facilitate the electron transfer to*COOH and thus reduce the*COOH formation energy barrier.This work demonstrates a strategy for modulating the coordination environment for efficient CO_(2)reduction.
基金supported by the National Natural Science Foundation of China(Nos.1222508,U1932213)the Fundamental Research Funds for the Central Universities(No.WK2060000016)+1 种基金the USTC Research Funds of the Double First-Class Initiative(No.YD2310002005)the Youth Innovation Promotion Association CAS(No.2020454)。
文摘Photocatalytic carbon dioxide(CO_(2))to carbon monoxide(CO)offers a promising way for both alleviating the greenhouse effect and meeting the industrial demand.Herein,we constructed a Co single-atom catalyst with intentional low-coordination environment design on porous ZnO(denoted as Co1/ZnO).Impressively,Co1/ZnO exhibited a remarkable activity with a CO yield rate of 22.25 mmol·g^(-1)·h^(-1) and a selectivity of 80.2%for CO_(2) photoreduction reactions under visible light.The incorporation of single Co atoms provided an additional photo-generated electron transfer channel,which suppressed the carrier recombination of photocatalysts.Moreover,the unsaturated Co active sites were capable to adsorb CO_(2) molecule spontaneously,thus facilitating the activation of CO_(2) molecule during CO_(2) reduction course.
基金funded by the National Natural Science Foundation of China (No.51972258)the Fundamental Research Funds for the Central Universities (WUT: No.2019IVA007)。
文摘Prussian whites(PWs) with a three-dimensional framework can accommodate the insertion and extraction of ions with large radius,which have been widely used in potassium ion batteries.However,PWs show the poor cycling performance and inferior rate ability because of high coordinated water.In this work,PWs with different water content were synthesized via a coprecipitation method by controlling the reaction temperature.The sample with low-coordination water prohibits the best electrochemical performance.It shows a high capacity of 120.5 mAh/g at 100 mA/g for potassium-ion batteries(KIBs).It also exhibits a good rate performance,displaying a capacity of 73.2 mAh/g at 500 mA/g.
基金supported by National Natural Science Foundation of China(Nos.21721003,22202080,22034006).
文摘Developing efficient pH-universal hydrogen evolution reaction(HER)catalysts is critical in the field of water electrolysis,however,which is severely hampered by the sluggish kinetics in alkaline media.Herein,a ruthenium(Ru)incorporation induced vacancy engineering strategy is firstly proposed to precisely construct oxygen vacancy(V_(O))-riched cobalt-ruthenium metaphosphate(CRPO)for high-efficiency pH-universal HER.The V_(O) modifies the electronic structure,improves the superficial hydrophilic and gas spillover capacity,it also reduces the coordination number of Ru atoms and regulates the coordination environment.Theoretical calculations indicate that Ru tends to adsorb H_(2)O and H^(*),whereas V_(O) tends to adsorb OH^(-),which greatly promotes the H_(2)O adsorption and the dissociation of HO-H bond.Ultimately,CRPO-2 exhibits remarkable HER performance,the mass activity is about 18.34,21.73,and 38.07 times higher than that of Pt/C in acidic,neutral,and alkaline media,respectively,at the same time maintain excellent stability.Our findings may pave a new avenue for the rational design of electrocatalysts toward pH-universal water electrolysis.