Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work...Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the slug...The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the sluggish reaction kinetics of sulfur species and notorious shuttling of soluble lithium polysulfides(LiPSs)intermediates that result in low sulfur utilization.The introduction of functional layers on separators has been considered as an effective strategy to improve the sulfur utilization in Li-S batteries by achieving effective regulation of LiPSs.Herein,a promising self-assembly strategy is proposed to achieve the low-cost fabrication of hollow and hierarchically porous Fe_(3)O_(4)nanospheres(p-Fe_(3)O_(4)-NSs)assembled by numerous extremely-small primary nanocrystals as building blocks.The rationally-designed p-Fe_(3)O_(4)-NSs are utilized as a multifunctional layer on the separator with highly efficient trapping and conversion features toward LiPSs.Results demonstrate that the nanostructured p-Fe_(3)O_(4)-NSs provide chemical adsorption toward LiPSs and kinetically promote the mutual transformation between LiPSs and Li_(2)S_(2)/Li_(2)S during cycling,thus inhibiting the LiPSs shuttling and boosting the redox reaction kinetics via a chemisorption-catalytic conversion mechanism.The enhanced wettability of the p-Fe_(3)O_(4)-NSs-based separator with the electrolyte enables fast transportation of lithium ions.Benefitting from these alluring properties,the functionalized separator with p-Fe_(3)O_(4)-NSs endows the battery with an admirable rate performance of 877 mAh g^(−1)at 2 C,an ultra-durable cycling performance of up to 2176 cycles at 1 C,and a promising areal capacity of 4.55 mAh cm^(−2)under high-sulfur-loading and lean-electrolyte conditions(4.29 mg cm^(−2),electrolyte/ratio:8μl mg^(−1)).This study will offer fresh insights on the rational design and low-cost fabrication of multifunctional separator to strengthen electrochemical reaction kinetics by regulating LiPSs conversion for developing efficient and long-life Li-S batteries.展开更多
When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached t...When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached to a robot.However,using these methods,the disaster situation inside a building at risk of collapse is difficult to detect and identify.Therefore,we investigate the generation of digital maps for a disaster site to accurately analyze internal situations.In this study,a robot combined with a low-cost camera and twodimensional light detection and ranging(2D-lidar)traverses across a floor to estimate the location of obstacles while drawing an internal map of the building.We propose an algorithm that detects the floor and then determines the possibility of entry,tracks collapses,and detects obstacles by analyzing patterns on the floor.The robot’s location is estimated,and a digital map is created based on Hector simultaneous localization and mapping(SLAM).Subsequently,the positions of obstacles are estimated based on the range values detected by 2D-lidar,and the position of the obstacles are identified on the map using the map update method in semantic SLAM.All equipment are implemented using low-specification devices,and the experiments are conducted using a low-cost robot that affords near-real-time performance.The experiments are conducted in various actual internal environments of buildings.In terms of obstacle detection performance,almost all obstacles are detected,and their positions identified on the map with a high accuracy of 89%.展开更多
Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable...Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.展开更多
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigat...A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The waste resin bonded sand was first reclaimed by a thermal method and the waste clay bonded sand was reclaimed by a wet method. Then, hot thermal reclaimed sand and the dehydrated wet reclaimed sand were mixed in certain proportions so that the hot thermal reclaimed sand dried the wet reclaimed sand leaving some water. The thermal reclamation efficiency of the waste resin bonded sand was researched at different heat levels. The optimized wet reclamation process of the waste clay bonded sand was achieved by investigating the effects of wet reclamation times, sand-water ratio and pH value on the reclaimed sand characteristics. The composite reclamation cost also was calculated. The research results showed that the properties of the mixed reclaimed sand can satisfy the application requirements of foundries; in which the temperature of the thermal reclamation waste resin bonded sand needs to be about 800 oC, the number of cycles of wet reclamation waste clay bonded sand should reach four to five, the optimal sand-water ratio of wet reclamation is around 1:1.5, and the pH value should be adjusted by adding acid. The mass ratio of hot thermal reclaimed sand to dehydrated wet reclaimed sand is about 1:2.5, and the composite reclaimed sand cost is around 100 yuan RMB per ton.展开更多
Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall ...Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composi...The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.展开更多
A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols dir...A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols directly from baseband signal rather than recovering PN code chips,so its structure is simple.Two main techniques are used to improve the performance of demodulator.One is Phase-Axis Crossing Detector(PACD) which detects the phase correlation of baseband signal.The other is symbol synchronization and sampling clock correction algorithm.The result shows that this demodulator performance,Symbol Error Rate(SER) and Packet Error Rate(PER) meet IEEE 802.15.4TM standard requirements and the demodulator can handle frequency offset in excess of 200 kHz,involving a Zero-IF receiver with a Noise Figure(NF) lower than 17 dB,which is easily imple-mented in standard CMOS technology.展开更多
The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and...The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.展开更多
Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adso...Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.展开更多
Exposure to mining-induced particulate matter(PM)including coal dust and diesel particulate matter(DPM)causes severe respirat-ory diseases such as coal workers’pneumoconiosis(CWP)and lung cancer.Limited spatiotempora...Exposure to mining-induced particulate matter(PM)including coal dust and diesel particulate matter(DPM)causes severe respirat-ory diseases such as coal workers’pneumoconiosis(CWP)and lung cancer.Limited spatiotemporal resolution of current PM monitors causes miners to be exposed to unknown PM concentrations,with increased overexposure risk.Low-cost PM sensors offer a potential solution to this challenge with their capability in characterizing PM concentrations with high spatiotemporal resolution.However,their application in underground mines has not been explored.With the aim of examining the potential application of low-cost sensors in underground mines,a critical review of the present status of PM sensor research is conducted.The working principles of present PM monitors and low-cost sensors are com-pared.Sensor error sources are identified,and comprehensive calibration processes are presented to correct them.Evaluation protocols are pro-posed to evaluate sensor performance prior to deployment,and the potential application of low-cost sensors is discussed.展开更多
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is...To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.展开更多
The main focus of this work was to design, develop and implementation of competitively robot arm with en- hanced control and stumpy cost. The robot arm was designed with four degrees of freedom and talented to accompl...The main focus of this work was to design, develop and implementation of competitively robot arm with en- hanced control and stumpy cost. The robot arm was designed with four degrees of freedom and talented to accomplish accurately simple tasks, such as light material handling, which will be integrated into a mobile platform that serves as an assistant for industrial workforce. The robot arm is equipped with several servo motors which do links between arms and perform arm movements. The servo motors include encoder so that no controller was implemented. To control the robot we used Labview, which performs inverse kinematic calculations and communicates the proper angles serially to a microcontroller that drives the servo motors with the capability of modifying position, speed and acceleration. Testing and validation of the robot arm was carried out and results shows that it work properly.展开更多
Mycotoxins/aflatoxins contaminations in some food commodities seriously impact human and animal health and reduce the commercial value of crops. Mycotoxins are toxic secondary metabolites produced by fungi that coloni...Mycotoxins/aflatoxins contaminations in some food commodities seriously impact human and animal health and reduce the commercial value of crops. Mycotoxins are toxic secondary metabolites produced by fungi that colonize agricultural commodities. Pre- and postharvest contamination of aflatoxin is a major health concern in Africa where maize production and consumption have increased significantly over the years. Efforts to reduce aflatoxin in maize through various strategies such as breeding for resistance, improved agronomic practices, cultural harvesting and postharvest handling practices, and the use of bio-control agents are available. Some of these control practices are not well known by smallholder farmers. Important pre- and postharvest practices, in addition to the stringent food safety regulations and monitoring, are not undertaken as a result of various factors such as a lack of awareness and training, and the high cost of awareness and sensitization drives. The climate changes scenarios including El Nino are also factors to be considered. However, continued use of sustainable and effective low-cost management practices by small scale farmers are possible ways of reducing the risk of aflatoxin contamination. This review attempts to highlight low-cost, affordable and practical management options at pre- and postharvest in maize. Sound low-cost management practices are possible ways of reducing the risk for fungal infection and aflatoxin contamination that are relevant to the Africa context. This review would be useful and guided prioritization of development activities, continuous awareness creation and training and future research.展开更多
Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical syst...Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical systems, low power micro-sensing technologies and improved industrial manufacturing processes have resulted in retrieving real-time data through Wireless Sensor Networks (WSNs) systems. In this study, a remotely operated low-cost and robust WSN system was developed to monitor and collect real-time hydrologic data from a small agricultural watershed in harsh weather conditions and upland rolling topography of Southern Ontario, Canada. The WSN system was assembled using off-the-shelf hardware components, and an open source operating system was used to minimize the cost. The developed system was rigorously tested in the laboratory and the field and found to be accurate and reliable for monitoring climatic and hydrologic parameters. The soil moisture and runoff data for 7 springs, 19 summer, and 19 fall season rainfall events over the period of more than two years were successfully collected in a small experimental agricultural watershed situated near Elora, Ontario, Canada. The developed WSN system can be readily extended for the purpose of most hydrological monitoring applications, although it was explicitly tailored for a project focused on mapping the Variable Source Areas (VSAs) in a small agricultural watershed.展开更多
Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials...Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials, which is not only expensive but also difficult to prepare the xonoflite fibers with diameters around 100 nm. In this study, the ultra fine xonotlite fibers with diameters around 100 nm were prepared by an autoclaving method. The preparation was low-cost oriented by using natural powder quartz and lime as the major raw materials. The intergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondary particles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibers and their secondary particles were produced at 216℃ for 6 h with a continuous stirring of 300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconium oxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an important role in controlling the diameter of xonotlite fibers.展开更多
基金Centre for Atmospheric Research,Nigeria,for providing the research grant required to conduct this study。
文摘Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.
基金financially supported by National Natural Science Foundation of China (Nos. U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No. 2022ZYGXZR101)+3 种基金Natural Science Foundation of Guangdong Province (No. 2021A1515010642)GuangdongHong Kong Joint Innovation Project of Guangdong Province(No. 2021A0505110002)Guangdong-Foshan Joint Foundation (No. 2021B1515120031)Innovation Group Project of Foshan (No. 2120001010816)
文摘The lithium-sulfur(Li-S)battery with an ultrahigh theoretical energy density has emerged as a promising rechargeable battery system.However,the practical applications of Li-S batteries are severely plagued by the sluggish reaction kinetics of sulfur species and notorious shuttling of soluble lithium polysulfides(LiPSs)intermediates that result in low sulfur utilization.The introduction of functional layers on separators has been considered as an effective strategy to improve the sulfur utilization in Li-S batteries by achieving effective regulation of LiPSs.Herein,a promising self-assembly strategy is proposed to achieve the low-cost fabrication of hollow and hierarchically porous Fe_(3)O_(4)nanospheres(p-Fe_(3)O_(4)-NSs)assembled by numerous extremely-small primary nanocrystals as building blocks.The rationally-designed p-Fe_(3)O_(4)-NSs are utilized as a multifunctional layer on the separator with highly efficient trapping and conversion features toward LiPSs.Results demonstrate that the nanostructured p-Fe_(3)O_(4)-NSs provide chemical adsorption toward LiPSs and kinetically promote the mutual transformation between LiPSs and Li_(2)S_(2)/Li_(2)S during cycling,thus inhibiting the LiPSs shuttling and boosting the redox reaction kinetics via a chemisorption-catalytic conversion mechanism.The enhanced wettability of the p-Fe_(3)O_(4)-NSs-based separator with the electrolyte enables fast transportation of lithium ions.Benefitting from these alluring properties,the functionalized separator with p-Fe_(3)O_(4)-NSs endows the battery with an admirable rate performance of 877 mAh g^(−1)at 2 C,an ultra-durable cycling performance of up to 2176 cycles at 1 C,and a promising areal capacity of 4.55 mAh cm^(−2)under high-sulfur-loading and lean-electrolyte conditions(4.29 mg cm^(−2),electrolyte/ratio:8μl mg^(−1)).This study will offer fresh insights on the rational design and low-cost fabrication of multifunctional separator to strengthen electrochemical reaction kinetics by regulating LiPSs conversion for developing efficient and long-life Li-S batteries.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/.
文摘When firefighters search inside a building that is at risk of collapse due to abandonment or disasters such as fire,they use old architectural drawings or a simple monitoring method involving a video device attached to a robot.However,using these methods,the disaster situation inside a building at risk of collapse is difficult to detect and identify.Therefore,we investigate the generation of digital maps for a disaster site to accurately analyze internal situations.In this study,a robot combined with a low-cost camera and twodimensional light detection and ranging(2D-lidar)traverses across a floor to estimate the location of obstacles while drawing an internal map of the building.We propose an algorithm that detects the floor and then determines the possibility of entry,tracks collapses,and detects obstacles by analyzing patterns on the floor.The robot’s location is estimated,and a digital map is created based on Hector simultaneous localization and mapping(SLAM).Subsequently,the positions of obstacles are estimated based on the range values detected by 2D-lidar,and the position of the obstacles are identified on the map using the map update method in semantic SLAM.All equipment are implemented using low-specification devices,and the experiments are conducted using a low-cost robot that affords near-real-time performance.The experiments are conducted in various actual internal environments of buildings.In terms of obstacle detection performance,almost all obstacles are detected,and their positions identified on the map with a high accuracy of 89%.
基金partially funded by Sao Paulo Research Foundation(FAPESP),Brazil,grant numbers#2015/18808-0,#2018/23064-8,#2019/23382-2.
文摘Weather events put human lives at risk mostly when people might occupy areas susceptible to natural disasters.Deploying Professional Weather Stations(PWS)in vulnerable areas is key for monitoring weather with reliable measurements.However,such professional instrumentation is notably expensive while remote sensing from a number of stations is paramount.This imposes challenges on the large-scale weather station deployment for broad monitoring from large observation networks such as in Cemaden—The Brazilian National Center for Monitoring and Early Warning of Natural Disasters.In this context,in this paper,we propose a Low-Cost Automatic Weather Station(LCAWS)system developed from Commercial Off-The-Shelf(COTS)and open-source Internet of Things(IoT)technologies,which provides measurements as reliable as a reference PWS for natural disaster monitoring.When being automatic,LCAWS is a stand-alone photovoltaic system connected wirelessly to the Internet in order to provide real-time reliable end-to-end weather measurements.To achieve data reliability,we propose an intelligent sensor calibration method to correct measures.From a 30-day uninterrupted observation with sampling in minute resolution,we show that the calibrated LCAWS sensors have no statistically significant differences from the PWS measurements.As such,LCAWS has opened opportunities for reducing maintenance costs in Cemaden's observational network.
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
基金supported by the National Natural Science Foundation (Grant numbers:50575085,51075163 and 51375187)
文摘A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The waste resin bonded sand was first reclaimed by a thermal method and the waste clay bonded sand was reclaimed by a wet method. Then, hot thermal reclaimed sand and the dehydrated wet reclaimed sand were mixed in certain proportions so that the hot thermal reclaimed sand dried the wet reclaimed sand leaving some water. The thermal reclamation efficiency of the waste resin bonded sand was researched at different heat levels. The optimized wet reclamation process of the waste clay bonded sand was achieved by investigating the effects of wet reclamation times, sand-water ratio and pH value on the reclaimed sand characteristics. The composite reclamation cost also was calculated. The research results showed that the properties of the mixed reclaimed sand can satisfy the application requirements of foundries; in which the temperature of the thermal reclamation waste resin bonded sand needs to be about 800 oC, the number of cycles of wet reclamation waste clay bonded sand should reach four to five, the optimal sand-water ratio of wet reclamation is around 1:1.5, and the pH value should be adjusted by adding acid. The mass ratio of hot thermal reclaimed sand to dehydrated wet reclaimed sand is about 1:2.5, and the composite reclaimed sand cost is around 100 yuan RMB per ton.
基金financially supported by the National Key Research and Development Program of China (2017YFA0402800)the National Natural Science Foundation of China (51772285)the National Synchrotron Radiation Laboratory at USTC.
文摘Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
基金Funded by the National Natural Science Foundation of China (Nos.50902150 & 90916019)the Graduate Innovation Foundation of the National University of Defense Technology(No.S100103)
文摘The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the low-cost urea route, and the effects of preparation temperatures, molar ratios of the raw materials and oxidation treatment on the composition, structure and surface morphology of the products were investigated through FT-IR, XRD and SEM. The results show that the products ceramize and crystallize gradually with the increase of the temperature. When the molar ratio and reaction temperature are 3:2 and 850 ℃, respectively, the products have high purity, compact structure and nice shape. The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitride but effectively remove the impurities.
基金Supported by Zhejiang Province Important Sci-Tech Foundation Item (No.2006C11107)
文摘A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols directly from baseband signal rather than recovering PN code chips,so its structure is simple.Two main techniques are used to improve the performance of demodulator.One is Phase-Axis Crossing Detector(PACD) which detects the phase correlation of baseband signal.The other is symbol synchronization and sampling clock correction algorithm.The result shows that this demodulator performance,Symbol Error Rate(SER) and Packet Error Rate(PER) meet IEEE 802.15.4TM standard requirements and the demodulator can handle frequency offset in excess of 200 kHz,involving a Zero-IF receiver with a Noise Figure(NF) lower than 17 dB,which is easily imple-mented in standard CMOS technology.
文摘The necessity of having an effective computer-aided decision support system in the housing construction industry is rapidly growing alongside the demand for green buildings and green building products. Identifying and defining financially viable low-cost green building materials and components, just like selecting them, is a crucial exercise in subjectivity. With so many variables to consider, the task of evaluating such products can be complex and discouraging. Moreover, the existing mode for selecting and managing, often very large information associated with their impacts constrains decision-makers to perform a trade-off analysis that does not necessarily guarantee the most environmentally preferable material. This paper introduces the development of a multi-criteria decision support system (DSS) aimed at improving the understanding of the principles of best practices associated with the impacts of low-cost green building materials and components. The DSS presented in this paper is to provide designers with useful and explicit information that will aid informed decision-making in their choice of materials for low-cost green residential housing projects. The prototype MSDSS is developed using macro-in-excel, which is a fairly recent database management technique used for integrating data from multiple, often very large databases and other information sources. This model consists of a database to store different types of low-cost green materials with their corresponding attributes and performance characteristics. The DSS design is illustrated with particular emphasis on the development of the material selection data schema, and application of the Analytical Hierarchy Process (AHP) concept to a material selection problem. Details of the MSDSS model are also discussed including workflow of the data evaluation process. The prototype model has been developed with inputs elicited from domain experts and extensive literature review, and refined with feedback obtained from selected expert builder and developer companies. This paper further demonstrates the application of the prototype MSDSS for selecting the most appropriate low-cost green building material from among a list of several available options, and finally concludes the study with the associated potential benefits of the model to research and practice.
基金Supported by the Taihu Special Project of Water Pollution Control,Jiangsu Province(No.TH2013214)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005)+1 种基金the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Open Foundation of State Key Laboratory of Lake Science and Environment,CAS(No.2014SKL005)
文摘Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
文摘Exposure to mining-induced particulate matter(PM)including coal dust and diesel particulate matter(DPM)causes severe respirat-ory diseases such as coal workers’pneumoconiosis(CWP)and lung cancer.Limited spatiotemporal resolution of current PM monitors causes miners to be exposed to unknown PM concentrations,with increased overexposure risk.Low-cost PM sensors offer a potential solution to this challenge with their capability in characterizing PM concentrations with high spatiotemporal resolution.However,their application in underground mines has not been explored.With the aim of examining the potential application of low-cost sensors in underground mines,a critical review of the present status of PM sensor research is conducted.The working principles of present PM monitors and low-cost sensors are com-pared.Sensor error sources are identified,and comprehensive calibration processes are presented to correct them.Evaluation protocols are pro-posed to evaluate sensor performance prior to deployment,and the potential application of low-cost sensors is discussed.
基金the National Natural Science Foundation of China(No.11372309,61304017)Youth Innovation Promotion Association(No.2014192)+1 种基金the Provincial Special Funds Project of Science and Technology Cooperation(No.2017SYHZ0024)Key Technology Development Project of Jilin Province(No.20150204074GX).
文摘To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV.
文摘The main focus of this work was to design, develop and implementation of competitively robot arm with en- hanced control and stumpy cost. The robot arm was designed with four degrees of freedom and talented to accomplish accurately simple tasks, such as light material handling, which will be integrated into a mobile platform that serves as an assistant for industrial workforce. The robot arm is equipped with several servo motors which do links between arms and perform arm movements. The servo motors include encoder so that no controller was implemented. To control the robot we used Labview, which performs inverse kinematic calculations and communicates the proper angles serially to a microcontroller that drives the servo motors with the capability of modifying position, speed and acceleration. Testing and validation of the robot arm was carried out and results shows that it work properly.
文摘Mycotoxins/aflatoxins contaminations in some food commodities seriously impact human and animal health and reduce the commercial value of crops. Mycotoxins are toxic secondary metabolites produced by fungi that colonize agricultural commodities. Pre- and postharvest contamination of aflatoxin is a major health concern in Africa where maize production and consumption have increased significantly over the years. Efforts to reduce aflatoxin in maize through various strategies such as breeding for resistance, improved agronomic practices, cultural harvesting and postharvest handling practices, and the use of bio-control agents are available. Some of these control practices are not well known by smallholder farmers. Important pre- and postharvest practices, in addition to the stringent food safety regulations and monitoring, are not undertaken as a result of various factors such as a lack of awareness and training, and the high cost of awareness and sensitization drives. The climate changes scenarios including El Nino are also factors to be considered. However, continued use of sustainable and effective low-cost management practices by small scale farmers are possible ways of reducing the risk of aflatoxin contamination. This review attempts to highlight low-cost, affordable and practical management options at pre- and postharvest in maize. Sound low-cost management practices are possible ways of reducing the risk for fungal infection and aflatoxin contamination that are relevant to the Africa context. This review would be useful and guided prioritization of development activities, continuous awareness creation and training and future research.
文摘Hydrological monitoring and real-time access to data are valuable for hydrological research and water resources management. In the recent decades, rapid developments in digital technology, micro-electromechanical systems, low power micro-sensing technologies and improved industrial manufacturing processes have resulted in retrieving real-time data through Wireless Sensor Networks (WSNs) systems. In this study, a remotely operated low-cost and robust WSN system was developed to monitor and collect real-time hydrologic data from a small agricultural watershed in harsh weather conditions and upland rolling topography of Southern Ontario, Canada. The WSN system was assembled using off-the-shelf hardware components, and an open source operating system was used to minimize the cost. The developed system was rigorously tested in the laboratory and the field and found to be accurate and reliable for monitoring climatic and hydrologic parameters. The soil moisture and runoff data for 7 springs, 19 summer, and 19 fall season rainfall events over the period of more than two years were successfully collected in a small experimental agricultural watershed situated near Elora, Ontario, Canada. The developed WSN system can be readily extended for the purpose of most hydrological monitoring applications, although it was explicitly tailored for a project focused on mapping the Variable Source Areas (VSAs) in a small agricultural watershed.
文摘Nanometer-sized xonotlite fibers have great potential application in many fields. The traditional method of preparing ultra fine xonotlite fibers uses the ultra fine and highly active silica as the major raw materials, which is not only expensive but also difficult to prepare the xonoflite fibers with diameters around 100 nm. In this study, the ultra fine xonotlite fibers with diameters around 100 nm were prepared by an autoclaving method. The preparation was low-cost oriented by using natural powder quartz and lime as the major raw materials. The intergrowth of the fibers formed thin shell hollow balls or ellipsoids, namely the secondary particles. The length of the nanometer-sized xonotlite fibers was around several microns. The fibers and their secondary particles were produced at 216℃ for 6 h with a continuous stirring of 300-500 r/min. Zirconium oxychloride was used as an additive. The experiments show that zirconium oxychloride has an enormous effect on the growing habit of xonotlite crystals and plays an important role in controlling the diameter of xonotlite fibers.