Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work...Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.展开更多
Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solve...Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the literature.In this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for MCS.The main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data samples.Finally,we conducted extensive experiments to evaluate the UAV-ITD scheme.The results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.展开更多
For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand....For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.展开更多
The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance an...The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.展开更多
A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigat...A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The waste resin bonded sand was first reclaimed by a thermal method and the waste clay bonded sand was reclaimed by a wet method. Then, hot thermal reclaimed sand and the dehydrated wet reclaimed sand were mixed in certain proportions so that the hot thermal reclaimed sand dried the wet reclaimed sand leaving some water. The thermal reclamation efficiency of the waste resin bonded sand was researched at different heat levels. The optimized wet reclamation process of the waste clay bonded sand was achieved by investigating the effects of wet reclamation times, sand-water ratio and pH value on the reclaimed sand characteristics. The composite reclamation cost also was calculated. The research results showed that the properties of the mixed reclaimed sand can satisfy the application requirements of foundries; in which the temperature of the thermal reclamation waste resin bonded sand needs to be about 800 oC, the number of cycles of wet reclamation waste clay bonded sand should reach four to five, the optimal sand-water ratio of wet reclamation is around 1:1.5, and the pH value should be adjusted by adding acid. The mass ratio of hot thermal reclaimed sand to dehydrated wet reclaimed sand is about 1:2.5, and the composite reclaimed sand cost is around 100 yuan RMB per ton.展开更多
Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall ...Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.展开更多
Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined acti...Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.展开更多
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adso...Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.展开更多
A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols dir...A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols directly from baseband signal rather than recovering PN code chips,so its structure is simple.Two main techniques are used to improve the performance of demodulator.One is Phase-Axis Crossing Detector(PACD) which detects the phase correlation of baseband signal.The other is symbol synchronization and sampling clock correction algorithm.The result shows that this demodulator performance,Symbol Error Rate(SER) and Packet Error Rate(PER) meet IEEE 802.15.4TM standard requirements and the demodulator can handle frequency offset in excess of 200 kHz,involving a Zero-IF receiver with a Noise Figure(NF) lower than 17 dB,which is easily imple-mented in standard CMOS technology.展开更多
基金Centre for Atmospheric Research,Nigeria,for providing the research grant required to conduct this study。
文摘Low-cost GNSS receivers have recently been gaining reliability as good candidates for ionospheric studies. In line with these gains are genuine concerns about improving the performance of these receivers. In this work, we present a comprehensive investigation of the performances of two antennas(the u-blox ANN-MB and the TOPGNSS TOP-106) used on a low-cost GNSS receiver known as the u-blox ZED-F9P. The two antennas were installed on two identical and co-located u-blox receivers. Data used from both receivers cover the period from January to June 2022. Results from the study indicate that the signal strengths are dominantly greater for the receiver with the TOPGNSS antenna than for the receiver with the ANN-MB antenna, implying that the TOPGNSS antenna is better than the ANN-MB antenna in terms of providing greater signal strengths. Summarily, the TOPGNSS antenna also performed better in minimizing the occurrence of cycle slips on phase TEC measurements. There are no conspicuous differences between the variances(computed as 5-min standard deviations) of phase TEC measurements for the two antennas, except for a period around May-June when the TOPGNSS gave a better performance in terms of minimizing the variances in phase TEC. Remarkably, the ANN-MB antenna gave a better performance than the TOPGNSS antenna in terms of minimizing the variances in pseudorange TEC for some satellite observations. For precise horizontal(North and East) positioning, the receiver with the TOPGNSS antenna gave better results, while the receiver with the ANN-MB antenna gave better vertical(Up) positioning. The errors for the receivers of both antennas are typically within about 5 m(the monthly mean was usually smaller than 1 m) in the horizontal direction and within about 10 m(the monthly mean was usually smaller than 4 m) in the vertical direction.
基金supported by the National Natural Science Foundation of China under Grant No.62072475.
文摘Unmanned and aerial systems as interactors among different system components for communications,have opened up great opportunities for truth data discovery in Mobile Crowd Sensing(MCS)which has not been properly solved in the literature.In this paper,an Unmanned Aerial Vehicles-supported Intelligent Truth Discovery(UAV-ITD)scheme is proposed to obtain truth data at low-cost communications for MCS.The main innovations of the UAV-ITD scheme are as follows:(1)UAV-ITD scheme takes the first step in employing UAV joint Deep Matrix Factorization(DMF)to discover truth data based on the trust mechanism for an Information Elicitation Without Verification(IEWV)problem in MCS.(2)This paper introduces a truth data discovery scheme for the first time that only needs to collect a part of n data samples to infer the data of the entire network with high accuracy,which saves more communication costs than most previous data collection schemes,where they collect n or kn data samples.Finally,we conducted extensive experiments to evaluate the UAV-ITD scheme.The results show that compared with previous schemes,our scheme can reduce estimated truth error by 52.25%–96.09%,increase the accuracy of workers’trust evaluation by 0.68–61.82 times,and save recruitment costs by 24.08%–54.15%in truth data discovery.
基金funded by the project scheme of the Publication Writing-IPR Incentive Program(PPHKI)2022Directorate of Research and Community Service(DRPM)Institut Teknologi Sepuluh Nopember(ITS)Surabaya,Indonesia for the financial supports。
文摘For the last two decades,low-cost Global Navigation Satellite System(GNSS)receivers have been used in various applications.These receivers are mini-size,less expensive than geodetic-grade receivers,and in high demand.Irrespective of these outstanding features,low-cost GNSS receivers are potentially poorer hardwares with internal signal processing,resulting in lower quality.They typically come with low-cost GNSS antenna that has lower performance than their counterparts,particularly for multipath mitigation.Therefore,this research evaluated the low-cost GNSS device performance using a high-rate kinematic survey.For this purpose,these receivers were assembled with an Inertial Measurement Unit(IMU)sensor,which actively transmited data on acceleration and orientation rate during the observation.The position and navigation parameter data were obtained from the IMU readings,even without GNSS signals via the U-blox F9R GNSS/IMU device mounted on a vehicle.This research was conducted in an area with demanding conditions,such as an open sky area,an urban environment,and a shopping mall basement,to examine the device’s performance.The data were processed by two approaches:the Single Point Positioning-IMU(SPP/IMU)and the Differential GNSS-IMU(DGNSS/IMU).The Unscented Kalman Filter(UKF)was selected as a filtering algorithm due to its excellent performance in handling nonlinear system models.The result showed that integrating GNSS/IMU in SPP processing mode could increase the accuracy in eastward and northward components up to 68.28%and 66.64%.Integration of DGNSS/IMU increased the accuracy in eastward and northward components to 93.02%and 93.03%compared to the positioning of standalone GNSS.In addition,the positioning accuracy can be improved by reducing the IMU noise using low-pass and high-pass filters.This application could still not gain the expected position accuracy under signal outage conditions.
文摘The development of this technology has favored the advances noted in recent years in the field of precise positioning. It has also paved the way for a wide range of research into the evaluation of their performance and reliability, their potential use in different fields, the improvement of performance and combined systems, etc. Single-frequency GNSS receivers, which for a long time remained the only category of low-cost GNSS receivers, often limited by their level of accuracy (metric) mainly due to their single-frequency nature, have been joined in the last decade by dual-frequency GNSS receivers developed by certain manufacturers of positioning equipment. These receivers now offer possible alternatives to the relatively expensive conventional (topographic quality) or geodetic receivers and. In this study, the performance of these low-cost dual-frequency receivers was evaluated in static and real-time kinematic GNSS positioning modes. Static positioning was carried out on three points with sessions of 2 h and 4 h over three days with antenna swapping (CHC i50, Leica GS14 and Emlid Reach RS2+). Real-time observations were carried out on eleven (11) points in open, poorly open and not at all open environments, in order to assess not only performance but also receiver sensitivity in environments with a high risk of multipath. The results obtained showed an average agreement of 2 cm in planimetry between the low-cost Emlid RS2+ receiver and the Leica GS14 and CHC i50 receivers. The differences in altimetry are nevertheless greater (sometimes up to decimetres for certain points). Real-time positioning results provided an average convergence of around 1 cm on the E, N and H components with the results from the low-cost Emlid Reach RS2+ and Ublox ZED-F9P receivers and the CHC i50 receiver. Analysis of the results obtained has enabled us to highlight the various issues and challenges associated with this new generation of GNSS receivers, with a view to enhancing their appropriation and optimal integration in the professional and research worlds.
基金supported by the National Natural Science Foundation (Grant numbers:50575085,51075163 and 51375187)
文摘A lot of mixed clay-resin waste sand from large-scale iron foundries is discharged every day; so mixed waste sand reclamation in low cost and high quality has a great realistic significance. In the study to investigate the possibility of reusing two types of waste foundry sands, resin bonded sand and clay bonded sand which came from a Chinese casting factory, a new low-cost reclamation method of the mixed foundry waste sand based on the wet-thermal composite reclamation was proposed. The waste resin bonded sand was first reclaimed by a thermal method and the waste clay bonded sand was reclaimed by a wet method. Then, hot thermal reclaimed sand and the dehydrated wet reclaimed sand were mixed in certain proportions so that the hot thermal reclaimed sand dried the wet reclaimed sand leaving some water. The thermal reclamation efficiency of the waste resin bonded sand was researched at different heat levels. The optimized wet reclamation process of the waste clay bonded sand was achieved by investigating the effects of wet reclamation times, sand-water ratio and pH value on the reclaimed sand characteristics. The composite reclamation cost also was calculated. The research results showed that the properties of the mixed reclaimed sand can satisfy the application requirements of foundries; in which the temperature of the thermal reclamation waste resin bonded sand needs to be about 800 oC, the number of cycles of wet reclamation waste clay bonded sand should reach four to five, the optimal sand-water ratio of wet reclamation is around 1:1.5, and the pH value should be adjusted by adding acid. The mass ratio of hot thermal reclaimed sand to dehydrated wet reclaimed sand is about 1:2.5, and the composite reclaimed sand cost is around 100 yuan RMB per ton.
基金financially supported by the National Key Research and Development Program of China (2017YFA0402800)the National Natural Science Foundation of China (51772285)the National Synchrotron Radiation Laboratory at USTC.
文摘Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction(OER)is considered as the bottleneck reaction in an overall water splitting system because it involves 4e- and 4H+ transfer processes.Currently,it is highly desirable to explore low-cost alternative catalysts for OER at ambient conditions.Herein,we report for the first time that nickel phosphide(Ni2P)nanosheets can be facilely grown on Fe foam(FF)as an efficient electrocatalyst for OER with excellent durability and catalytic activity under alkaline conditions.To reach a current density of 10 m A/cm2,the Ni2P-FF catalyst required a low overpotential of only 198 mV for OER.The catalyst’s high OER activity and durability were well maintained at a high current density.The required overpotentials were only 267 and 313 mV to achieve the current densities of 100 and 300 m A/cm2,respectively.The combination of low-cost Fe foam with Ni2P provides a promising low-cost catalyst for large-scale application of electrocatalytic water splitting.
基金supported by the Universiti Kebangsaan Malaysia Grant(Grant No.GUP-2014-077)
文摘Drinking water is supplied through a centralized water supply system and may not be accessed by communities in rural areas of Malaysia.This study investigated the performance of a low-cost, self-prepared combined activated carbon and sand filtration(CACSF) system for roofharvested rainwater and lake water for potable use. Activated carbon was self-prepared using locally sourced coconut shell and was activated using commonly available salt rather than a high-tech procedure that requires a chemical reagent. The filtration chamber was comprised of local,readily available sand. The experiments were conducted with varying antecedent dry intervals(ADIs) of up to 15 d and lake water with varying initial chemical oxygen demand(COD) concentration. The CACSF system managed to produce effluents complying with the drinking water standards for the parameters p H, dissolved oxygen(DO), biochemical oxygen demand(BOD5), COD, total suspended solids(TSS), and ammonia nitrogen(NH_3-N). The CACSF system successfully decreased the population of Escherichia coli(E. coli) in the influents to less than 30 CFU/m L. Samples with a higher population of E. coli(that is, greater than 30 CFU/m L) did not show 100% removal. The system also showed high potential as an alternative for treated drinking water for roof-harvested rainwater and class II lake water.
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
基金Supported by the Taihu Special Project of Water Pollution Control,Jiangsu Province(No.TH2013214)the National Water Pollution Control and Management Technology Major Project(No.2012ZX07103-005)+1 种基金the Industry-Academia Cooperation Innovation Fund Project of Jiangsu Province(No.BY2011165)the Open Foundation of State Key Laboratory of Lake Science and Environment,CAS(No.2014SKL005)
文摘Thermally activated pinecone(TAP) was used for the adsorption of dimethyl trisulfide(DMTS)from aqueous solutions,which was proved to be the main odorous in algae-caused black bloom.The effects of adsorbent dosage,adsorbate concentration and contact time on DMTS biosorption were studied.The TAP produced at 600℃ exhibited a relatively high surface area(519.69 m^2/g) and excellent adsorption capacity.The results show that the adsorption of DMTS was initially fast and that the equilibrium time was6 h.Higher initial DMTS concentrations led to lower removal percentages but higher adsorption capacity.The removal percentage of DMTS increased and the adsorption capacity of TAP decreased with an increase in adsorbent dosage.The adsorption process conforms well to a pseudo-second-order kinetics model.The adsorption of DMTS is more appropriately described by the Freundlich isotherm(R^2=0.996 1) than by the Langmuir isotherm(R^2=0.916 9).The results demonstrate that TAP could be an attractive low-cost adsorbent for removing DMTS from water.
基金Supported by Zhejiang Province Important Sci-Tech Foundation Item (No.2006C11107)
文摘A new low-cost demodulator for ZigBee receivers satisfying requirements of IEEE802.15.4 standard is presented,which is designed for ISM 2.4 GHz band and based on Zero-IF receivers.This demodulator extracts symbols directly from baseband signal rather than recovering PN code chips,so its structure is simple.Two main techniques are used to improve the performance of demodulator.One is Phase-Axis Crossing Detector(PACD) which detects the phase correlation of baseband signal.The other is symbol synchronization and sampling clock correction algorithm.The result shows that this demodulator performance,Symbol Error Rate(SER) and Packet Error Rate(PER) meet IEEE 802.15.4TM standard requirements and the demodulator can handle frequency offset in excess of 200 kHz,involving a Zero-IF receiver with a Noise Figure(NF) lower than 17 dB,which is easily imple-mented in standard CMOS technology.