In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this pr...In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.展开更多
An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of c...An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards,and their deflection angles are also simulated to meet the needs of trajectory correction capabilities.Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations.Results that obtained here can be further applied to the exterior ballistics design.展开更多
The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile.The engraving process plays a crucial role on determining the ballistic performanc...The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile.The engraving process plays a crucial role on determining the ballistic performance and projectile stability.This paper analyzes the dynamic response of a guided projectile during the engraving process.By considering the projectile center of gravity moving during the engraving process,a dynamics model is established with the coupling of interior ballistic equations.The results detail the stress situation of a guided projectile band during its engraving process.Meanwhile,the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched.To further explore how the different performance of the engraving band can affect the dynamics of guided projectile,this paper focuses on these two aspects:(a) the effects caused by the different band geometry;and(b) the effects caused by different band materials.The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width.A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.展开更多
This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better descri...This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile.Finally,it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability,primarily airframe structure and canard properties.A conclusion is given,highlighting important guidelines from the enclosed discussions.展开更多
基金supported by the Natural Science Foundation of Beijing Municipality(Grant No.4212003)the Crossdisciplinary Collaboration Project of Beijing Municipal Science and Technology New Star Program(Grant No.202111)。
文摘In the process of launching guided projectile under the conventional system, it is difficult to effectively obtain the precise navigation parameters of the projectile in the high dynamic environment. Aiming at this problem, this paper describes a new system of guided ammunition based on tail spin reduction. After analyzing the mechanism of the ammunition's tail spin reduction, a navigation method of large scale difference tail control simple guided ammunition based on speed constraint is proposed. In this method,the corresponding navigation constraints can be carried out by combining the rotation speed state of the ammunition itself, and the optimal solution of navigation parameters during the flight of the missile can be obtained by Extended Kalman Filter(EKF). Finally, the performance of the proposed method was verified by the simulation environment, and the hardware-in-the-loop simulation test and flight test were carried out to verify the performance of the method in the real environment. The experimental results show that the proposed method can achieve the optimal estimation of navigation parameters for simple guided ammunition with large-scale difference tail control. Under the conditions of simulation test and hardware-in-loop simulation test, the position and velocity errors calculated by the method in this paper converged. Under the condition of flight test, the spatial average error calculated by the method described in this paper is 6.17 m, and the spatial error of the final landing point is 3.50 m.Through this method, the accurate acquisition of navigation parameters in the process of projectile launching is effectively realized.
文摘An optimization method is introduced to design the aerodynamic parameters of a dual-spin twodimensional guided projectile with the canards for trajectory correction. The nose guidance component contains two pairs of canards which can provide lift and despin with the projectile for stability. The optimal design algorithm is developed to decide the profiles both of the steering and spinning canards,and their deflection angles are also simulated to meet the needs of trajectory correction capabilities.Finally, the aerodynamic efficiency of the specific canards is discussed according to the CFD simulations.Results that obtained here can be further applied to the exterior ballistics design.
基金supported by the Research Fund for the Natural Science Foundation of Jiangsu province (BK20131348)Key Laboratory Fund(Grant No. 9140C300103140C30001),People's Republic of China
文摘The reliability of the electronic components inside a guided projectile is highly affected by the launch dynamics of guided projectile.The engraving process plays a crucial role on determining the ballistic performance and projectile stability.This paper analyzes the dynamic response of a guided projectile during the engraving process.By considering the projectile center of gravity moving during the engraving process,a dynamics model is established with the coupling of interior ballistic equations.The results detail the stress situation of a guided projectile band during its engraving process.Meanwhile,the axial dynamic response of projectile in the several milliseconds following the engraving process is also researched.To further explore how the different performance of the engraving band can affect the dynamics of guided projectile,this paper focuses on these two aspects:(a) the effects caused by the different band geometry;and(b) the effects caused by different band materials.The time domain and frequency domain responses show that the dynamics of the projectile are quite sensitive to the engraving band width.A material with a small modulus of elasticity is more stable than one with a high modulus of elasticity.
基金sponsored by EPSRC ICASE Grant reference 1700064BAE Systems。
文摘This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them.It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile.Finally,it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability,primarily airframe structure and canard properties.A conclusion is given,highlighting important guidelines from the enclosed discussions.