期刊文献+
共找到47,235篇文章
< 1 2 250 >
每页显示 20 50 100
Research into Applicability of Wöhler Curve Method for Low-Cycle Fatigue of Metallic Materials
1
作者 Xiangqiao Yan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期22-37,共16页
Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important... Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals. 展开更多
关键词 low cycle fatigue Wöhler curve method coffin-manson curve method METALS
下载PDF
Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91-Ca-Y alloys extruded at different temperatures
2
作者 Ye Jin Kim Young Min Kim +2 位作者 Jun Ho Bae Soo-Hyun Joo Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期892-902,共11页
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve... The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude. 展开更多
关键词 AZ91-Ca-Y Extrusion temperature MICROSTRUCTURE low-cycle fatigue fatigue life prediction model
下载PDF
Low-cycle fatigue behaviour of Mg-9Gd-4Y-2Zn-0.5Zr alloys with different structures
3
作者 Jinsheng Ji Jie Zheng +5 位作者 Leichen Jia Yong Zhang Yunfei Jia Yusha Shi Heng Zhang Yong Xue 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3382-3393,共12页
The strain-controlled cyclic deformation behaviour of Mg-9Gd-4Y-2Zn-0.5Zr with different structures was investigated. Alloys were prepared by solution, extrusion and pre-ageing extrusion, and the microstructures befor... The strain-controlled cyclic deformation behaviour of Mg-9Gd-4Y-2Zn-0.5Zr with different structures was investigated. Alloys were prepared by solution, extrusion and pre-ageing extrusion, and the microstructures before and after the fatigue tests were characterized.Experimental results indicated that the bimodal structure owned the better performance in fatigue test, which was attributed to the higher yield strength. For the equiaxed structure, cyclic hardening induced stress concentration until the failure. Stable cyclic deformation and persistent cyclic softening played an important role at the low and high strain amplitudes, respectively. This was attributed to the formation of fine grains relieving the stress concentration during cyclic loading. In addition, residual twins were observed in equiaxed structure to induce crack, and the bimodal structure effectively restrain it. 展开更多
关键词 Strain-controlled fatigue Bimodal structure FRACTOGRAPHY Mg-Gd-Y-Zn-Zr alloy
下载PDF
Low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys 被引量:2
4
作者 Chen Lijia Wang Di +1 位作者 Che Xin Li Feng 《China Foundry》 SCIE CAS 2012年第1期39-42,共4页
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys.To feature their mechanical aspect of fatigue behavior,the low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg all... Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys.To feature their mechanical aspect of fatigue behavior,the low-cycle fatigue behavior of permanent mold cast and die-cast Al-Si-Cu-Mg alloys at room temperature was investigated.The experimental results show that both permanent mold cast and die-cast Al-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening.At the same total strain amplitude,the die-cast Al-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast Al-Si-Cu-Mg alloy.The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior,and can be described by the Basquin and Coffin-Manson equations,respectively. 展开更多
关键词 permanent mold cast DIE-CAST aluminum alloy low-cycle fatigue fatigue life cyclic stress response
下载PDF
Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications 被引量:1
5
作者 Yihui Zhou Yu-Chen OU +1 位作者 George C. Lee Jerome S. O'Connor 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期449-457,共9页
Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need ... Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance. 展开更多
关键词 Stainless reinforcing steel low-cycle fatigue seismic applications corrosion resistance
下载PDF
A NEW CYCLIC J-INTEGRAL FOR LOW-CYCLE FATIGUE CRACK GROWTH
6
作者 胡宏玖 郭兴明 +2 位作者 李培宁 谢禹钧 李洁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第2期149-160,共12页
The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The ... The constitutive equation under the low-cycle fatigue (LCF) was discussed, and a two-dimensional (2-D) model for simulating fatigue crack extension was put forward in order to propose a new cyclic J-integral. The definition, primary characteristics, physical interpretations and numerical evaluation of the new parameter were investigated in detail. Moreover, the new cyclic J-integral for LCF behaviors was validated by the compact tension (CT) specimens. Results show that the calculated values of the new parameter can correlate well with LCF crack growth rate, during constant-amplitude loading. In addition, the phenomenon of fatigue retardation was explained through the viewpoint of energy based on the concept of the new parameter. 展开更多
关键词 cyclic J-integral low-cycle fatigue constitutive equation numerical evaluation fatigue retardation
下载PDF
INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS
7
作者 H.C.Yang Y.Tu +1 位作者 M.M.Yu J.Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期597-600,共4页
Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, a... Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature, 550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed. 展开更多
关键词 P91 pipe low-cycle fatigue fatigue crack growth
下载PDF
CYCLIC SOFTENING IN HOT-WORKING DIE STEELS DURING LOW-CYCLE FATIGUE
8
作者 HU Zhenhua XIAO Jiexuan Huazhong University of Science and Technology,Wuhan,China HU Zhenhua,Associate Professor,Huazhong University of Science and Technology,Wuhan 430074,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第3期199-203,共5页
The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening... The characteristics and microstructural changes of cyclic softening in hot-working die steels 5CrNiMo and 5Cr2NiMoVSi were studied under strain controlled low-cycle fatigue.The re- sults show that the cyclic softening is featured in both steels hardened in different conditions under the strain controlled amplitude range of Δε_t/2=0.6-1.8×10^(-2).The softening effect mainly occurs in some initial cycles and the stress amplitude varies slightly in the sequential cycles,i.e.the softening effect is minified.No obvious stress saturation phenomenon was ob- served during the whole cyclic deformation.The TEM analysis shows that the cyclic softening is related to heterogenity of plastic deformation.The softening of the tested steels is caused by the formation of the dislocation cell structure with low density and low internal stress,and by the fragmentation and redissolution of fine carbides into matrix. 展开更多
关键词 low-cycle fatigue hot work die steel cyclic softening
下载PDF
TEMPERATURE EFFECT ON LOW-CYCLE FATIGUE BEHAVIOR OF NICKEL-BASED SINGLE CRYSTALLINE SUPERALLOY 被引量:4
9
作者 Xianfeng Ma Huiji Shi +3 位作者 Jialin Gu Zhaoxi Wang Harald Harders Thomas Malow 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期289-297,共9页
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low... The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃. 展开更多
关键词 low cycle fatigue single crystal nickel-based superalloy
下载PDF
Low-cycle Fatigue Properties of an Ultrafine-grained Magnesium Alloy Processed by Equal-channel Angular Pressing 被引量:1
10
作者 朱荣 WU Yanjun JI Wenqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1029-1032,共4页
Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled... Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled tension-compression fatigue tests were conducted at the frequency of 1 Hz in ambient air. The microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The hysteresis loops of the ECAP processed and conventionally extruded samples display obviously different shapes in the total strain amplitude range from 0.2% to 0.6%. Accordingly, the low cycle fatigue lives of ECAP processed samples are found to be longer than those of extruded samples, which can be attributed to the different in the hysteresis energy incorporating tensile strain energy. 展开更多
关键词 magnesium alloy low cycle fatigue hysteresis energy fatigue life ECAP
下载PDF
Low-cycle Fatigue Behavior of Ni-based Superalloy GH586 with Laser Shock Processing 被引量:2
11
作者 曹将栋 ZHANG Junsong +3 位作者 花银群 RONG Zhen CHEN Ruifang YE Yunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1186-1192,共7页
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstr... Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation. 展开更多
关键词 laser shock processing Ni-based superalloy fatigue fracture microstructure
下载PDF
Short-range ordering plays a determining role in the low-cycle fatigue life improvement of fcc metals: A conclusive study on low solid-solution hardening Ni-Cr alloys
12
作者 Y.J.Zhang D.Han X.W.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第25期157-171,共15页
The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at consta... The effect of short-range ordering (SRO) on the low-cycle fatigue (LCF) behavior of low solid-solution hardening Ni-Cr alloys with high stacking fault energies (SFEs) was systematically studied under cycling at constant total strain amplitude (Δε t /2) in the range of 0.1%–0.7%. The results show that an inducement of SRO structures can notably improve the fatigue life of the alloy regardless of Δε t /2, and several unique fatigue characteristics have been detected, including the transition of fatigue cracking mode from intergranular cracking to slip band cracking, the non-negligible evolution from non-Masing behavior in pure Ni to Masing behavior in the Ni-40Cr alloy, and the secondary cyclic hardening behavior in the Ni-10Cr and Ni-20Cr alloys. All these experimental phenomena are tightly associated with the transformation in cyclic deformation mechanisms that is induced by SRO based on the “glide plane softening” effect. Furthermore, a comprehensive fatigue life prediction model based on total hysteresis energy has been reasonably proposed, focusing on the analyses of the macroscopic model parameters (namely the fatigue cracking resistance exponent β and the crack propagation resistance parameter W 0 ) and microscopic damage mechanisms. In brief, on the premise that the effects of SFE and friction stress can be nearly ignored, as in the case of the present low solid-solution hardening Ni-Cr alloys with high SFEs, an enhancement of SRO in face-centered cubic metals has been convincingly confirmed to be an effective strategy to improve their LCF performance. 展开更多
关键词 Ni-Cr alloy Short range ordering Low solid-solution hardening low-cycle fatigue Slip mode fatigue life prediction model
原文传递
Low-cycle fatigue behavior of DZ125 superalloy under prior exposure conditions
13
作者 Hong-Yu Qi Xiao-Lei Zheng +3 位作者 Li-Qiang Ma Shao-Lin Li Xiao-Guang Yang Duo-Qi Shi 《Rare Metals》 SCIE EI CAS CSCD 2023年第6期2028-2036,共9页
Low-cycle fatigue(LCF) behavior of the directionally solidified(DS) nickel-based DZ125 superalloy was studied at elevated temperature(980 ℃).Specimens were,respectively,exposed for 0,2,25,50,and 100 h in air.The fati... Low-cycle fatigue(LCF) behavior of the directionally solidified(DS) nickel-based DZ125 superalloy was studied at elevated temperature(980 ℃).Specimens were,respectively,exposed for 0,2,25,50,and 100 h in air.The fatigue life of pre-exposed specimens is lower than that of unexposed specimens.The result is closely associated with fatigue crack initiation and propagation due to oxygen embrittlement and cycle loading.Detailed fractographic evaluations indicate the fatigue life is closely related to the surface microstructural modification.The resulting changes in microstructure cause the decrease in the effective area and the increase in actual stress.A methodology based on the continuum damage mechanics is developed to describe the correlation between the residual LCF life and pre-exposed time. 展开更多
关键词 Nickel-based superalloy OXIDATION Prior exposure low-cycle fatigue Continuum damage mechanics
原文传递
Low-cycle Fatigue Behaviors of an As-extruded Mg-12%Gd-3%Y-0.5%Zr Alloy 被引量:5
14
作者 S.M.Yin S.X.Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第8期775-780,共6页
Cyclic deformation and fatigue behaviors of Mg-12%Gd-3%Y-0.5%Zr (wt%, GW123K) alloy were investigated at room temperature under axial cyclic loading in strain controlled condition. It is shown that conventional extr... Cyclic deformation and fatigue behaviors of Mg-12%Gd-3%Y-0.5%Zr (wt%, GW123K) alloy were investigated at room temperature under axial cyclic loading in strain controlled condition. It is shown that conventional extruded GW123K alloy maintained cyclic stability at strain amplitudes ranging from 2 × 10^-3 to 10^-2. The pronounced symmetric hysteresis loops were also observed during cyclic loading. Fracture surface observations indicated that fatigue cracks mainly initiated at large Gd-riched phase or at inclusion clusters at surface or subsurface, and grain boundary (GB) and slip bands (SBs) are also preferential sites for micro-crack incubation. 展开更多
关键词 Magnesium alloy low-cycle fatigue Cyclic stabilization fatigue crack FRACTOGRAPHY
原文传递
Microstructural features of Ti-6Al-4V manufactured via high power laser directed energy deposition under low-cycle fatigue 被引量:3
15
作者 Y.M.Ren X.Lin +5 位作者 H.O.Yang H.Tan J.Chen Z.Y.Jian J.Q.Li W.D.Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期18-33,共16页
Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the m... Laser additive manufacturing(LAM)technique has unique advantages in producing geometrically complex metallic components.However,the poor low-cycle fatigue property(LCF)of LAM parts restricts its widely used.Here,the microstructural features of a Ti-6 Al-4 V alloy manufactured via high power laser directed energy deposition subjected to low-cycle fatigue loading were studied.Before fatigue loading,the microstructure of the as-deposited parts was found to exhibit a non-homogeneous distribution of columnar prior-βgrains(200-4000μm)at various scanning velocities(300-1500 mm/min)and relatively coarseα-laths(1.0-4.5μm).Under cyclic loading,fatigue microcracks typically initiated within the alignedαphases in the preferred orientation(45°to the loading direction)at the surface of the fatigue specimens.Fatigued Ti-6 Al-4 V exhibited a single straight dislocation character at low strain amplitudes(<0.65%)and dislocation dipoles or even tangled dislocations at high strain amplitudes(>1.1%).In addition,dislocation substructure features,such as dislocation walls,stacking faults,and dislocation networks,were also observed.These findings may provide opportunities to understand the fatigue failure mechanism of additive manufactured titanium parts. 展开更多
关键词 Laser additive manufacturing Directed energy deposition Titanium alloy low-cycle fatigue MICROSTRUCTURE
原文传递
Low-Cycle Fatigue Properties of Nickel-Based Superalloys Processed by High-Gradient Directional Solidification 被引量:1
16
作者 Z.D.Fan D.Wang +4 位作者 C.Liu G.Zhang J.Shen L.H.Lou J.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第9期878-886,共9页
The low-cycle fatigue (LCF) properties of DD10 (single-crystal) and DZ53 (columnar-grained) superalloys solidified by liquid-metal cooling (LMC) and high-rate solidification (HRS) processes have been systema... The low-cycle fatigue (LCF) properties of DD10 (single-crystal) and DZ53 (columnar-grained) superalloys solidified by liquid-metal cooling (LMC) and high-rate solidification (HRS) processes have been systematically investi- gated. It was found that the LCF life of DZ53 solidified by LMC was obviously better than that solidified by HRS. In contrast, for DD10, LMC showed no remarkable influences on LCF properties at high temperature and only improved LCF properties at intermediate temperature. Microstructure examination showed that the cracks generally initiated at microp- ores in the subsurface at intermediate temperature. However, the cracks occurred on the surface due to oxidation, or persistent slip bands near script-MC at high temperature. Therefore, the benefits of LMC technique can be attributed to both of the reduced casting defects which significantly affect the LCF properties at intermediate temperature and the improved microstructural homogeneity which was strongly correlated to the LCF properties of alloys at high temperature. 展开更多
关键词 SUPERALLOYS Rapid solidification low-cycle fatigue MICROSTRUCTURE
原文传递
Analysis of meso-inhomogeneous deformation on a metal material surface under low-cycle fatigue 被引量:4
17
作者 Gui-Long Liu Ke-Shi Zhang +1 位作者 Xian-Ci Zhong Jiann Woody Ju 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第6期557-572,共16页
A polycrystalline Voronoi aggregation with a free surface is applied as the representative volume element(RVE)of the nickel-based GH4169 superalloy.Considering the plastic deformation mechanism at the grain level an... A polycrystalline Voronoi aggregation with a free surface is applied as the representative volume element(RVE)of the nickel-based GH4169 superalloy.Considering the plastic deformation mechanism at the grain level and the Bauschinger effect,a crystal plasticity model reflecting the nonlinear kinematic hardening of crystal slipping system is applied.The microscopic inhomogeneous deformation during cyclic loading is calculated through numerical simulation of crystal plasticity.The deformation inhomogeneity on the free surface of the RVE under cyclic loading is described respectively by using the following parameters:standard deviation of the longitudinal strain in macro tensile direction,statistical average of first principal strains,and standard deviation of longitudinal displacement.The relationship between the fatigue cycle number and the evolution of inhomogeneous deformation of the material’s free surface is investigated.This research finds that:(1)The inhomogeneous deformation of the material free surface is significantly higher than that of the RVE inside;(2)the increases of the characterization parameters of inhomogeneous deformation on the free surface with cycles reflect the local maximum deformation of the RVE growing during cyclic loading;(3)these parameters can be used as criteria to assess and predict the low-cycle fatigue life rationally. 展开更多
关键词 Inhomogeneous deformation Surface Grain-level Crystal plasticity low-cycle fatigue Life prediction
原文传递
Thermal-structural response and low-cycle fatigue damage of channel wall nozzle 被引量:3
18
作者 Cheng Cheng Wang Yibai +2 位作者 Liu Yu Liu Dawei Lu Xingyu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1449-1458,共10页
To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis tec... To investigate the thermo-mechanical response of channel wall nozzle under cyclic working loads,the fnite volume fluid-thermal coupling calculation method and the fnite element thermal-structural coupling analysis technique are applied.In combination with the material lowcycle fatigue behavior,the modifed continuous damage model on the basics of local strain approach is adopted to analyze the fatigue damage distribution and accumulation with increasing nozzle work cycles.Simulation results have shown that the variation of the non-uniform temperature distribution of channel wall nozzle during cyclic work plays a signifcant role in the thermal-structural response by altering the material properties;the thermal-mechanical loads interaction results in serious deformation mainly in the front region of slotted liner.In particular,the maximal cyclic strains appear in the intersecting regions of liner gas side wall and symmetric planes of channel and rib,where the fatigue failure takes place initially;with the increase in nozzle work cycles,the residual plastic strain accumulates linearly,and the strain amplitude and increment in each work cycle are separately equal,but the fatigue damage grows up nonlinearly.As a result,a simplifed nonlinear damage accumulation approach has been suggested to estimate the fatigue service life of channel wall nozzle.The predicted node life is obviously conservative to the Miner's life.In addition,several workable methods have also been proposed to improve the channel wall nozzle durability. 展开更多
关键词 Channel wall nozzle Damage Life low-cycle fatigue Reusable engine Thermal-structural response
原文传递
Performances of fissured red sandstone after thermal treatment with constant-amplitude and low-cycle impacts
19
作者 Yongjun Chen Tubing Yin +3 位作者 P.G.Ranjith Xibing Li Qiang Li Dengdeng Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期561-587,共27页
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston... In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave. 展开更多
关键词 Red sandstone Temperature FISSURE Constant-amplitude and low-cycle(CALC) impact fatigue failure Response surface method(RSM)
下载PDF
Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy
20
作者 Seyed Amir Arsalan Shams Jae Wung Bae +3 位作者 Jae Nam Kim Hyoung Seop Kim Taekyung Lee Chong Soo Lee 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第20期115-128,共14页
In this study, the deformation behaviors and related microstructural evolutions were investigated in either monotonic or cyclic deformation modes in an interstitial metastable high-entropy alloy. These investigations ... In this study, the deformation behaviors and related microstructural evolutions were investigated in either monotonic or cyclic deformation modes in an interstitial metastable high-entropy alloy. These investigations aimed to reveal the mechanisms underlying the superior low-cycle fatigue(LCF) life of this alloy.A thermomechanical process was applied to induce fine-grained(FG) and coarse-grained(CG) microstructures in Fe–30Mn–10Co–10Cr–0.4C(atomic percentage) alloy. Their superior combination of strength and ductility was attributed to the appearance of deformation-induced ε-martensite and the presence of carbon. The CG alloy showed a greater volume fraction of ε-martensite than the FG alloy in the monotonic deformation mode, and vice versa in the cyclic mode. Such a disparity was interpreted in light of the back-stress effect of the relaxed γ-grain boundaries in the latter mode. Meanwhile, the γ-to-ε phase transformation under cyclic loading at low strain amplitudes(0.4%) barely led to an improved fatigue life as compared with that at higher strain amplitudes(≥ 0.55%). The high reversibility of partial dislocation motions under cyclic loading and delaying the formation of dislocation cells through the martensitic transformation could explain why the alloys investigated in this study exhibited a superior LCF life compared with high-entropy alloys reported in previous studies. 展开更多
关键词 High-entropy alloy Transformation-induced plasticity Monotonic deformation Cyclic deformation low-cycle fatigue Stacking faults
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部