The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolu...The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.展开更多
The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are inve...The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude.展开更多
A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicl...A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.展开更多
Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to g...Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line.展开更多
An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion f...An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture.展开更多
In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandston...In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.展开更多
Heterogeneous brittle geomaterials are highly susceptible to cyclic loads.They contain inherent flaws and cracks that grow under fatigue loads and lead to failure.This study presents a numerical model for analyzing fa...Heterogeneous brittle geomaterials are highly susceptible to cyclic loads.They contain inherent flaws and cracks that grow under fatigue loads and lead to failure.This study presents a numerical model for analyzing fatigue in these materials based on the two-dimensional(2D)boundary element method and linear elastic fracture mechanics.The process is formulated by coupling the displacement discontinuity method with the incorporation technique of dissimilar regions and the governing equations of fatigue.The heterogeneous media are assumed to consist of materials with different properties,and the interfaces are assumed to be completely bonded.In addition,the domains include multiple cracks exposed to constant and variable amplitude cyclic loads.The stress intensity factor is a crucial parameter in fatigue analysis,which is determined using the displacement field around crack tips.An incremental crack growth scheme is applied to calculating the fatigue life.The growth rate values are employed to estimate the length of crack extension when there are multiple cracks.The interaction between cracks is considered,which also includes the coalescence phenomenon.Finally,various structures under different cyclic loads are examined to evaluate the accuracy of this method.The results demonstrate the efficiency of the proposed approach in modeling fatigue crack growth and life estimation.The behavior of life curves for the heterogeneous domain was as expected.These curves illustrate the breakpoints caused by utilizing discrete incremental life equations.At these points,the trend of the curves changed with the material properties and fatigue characteristics of the new material around the crack tips.展开更多
A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was pos...A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was possible to consider the influence of both creep-fatigue interaction and multiaxial stress state on fatigue life. In order to predict the combined axial-torsional fatigue life the damage under combined loading was defined as linear summation of the damages under axial loading and torsional loading. Axial-torsional creep-fatigue tests were carried out using tubular specimens of 316LC austenitic stainless steel and the ferritic rotor steel. This rotor steel was developed for the permanent magnet type eddy current retarder in heavy trucks. Experimentally obtained lives of both steels were well corresponded with the lives predicted by the proposed method. It was found that the proposed method was effective in multiaxial fatigue life evaluation under proportional creep-fatigue loadings.展开更多
The investigation on fatigue lives of reinforced concrete (RC) structures strength- ened with fiber laminate under random loading is important for the repairing or the strengthening of bridges and the safety of the ...The investigation on fatigue lives of reinforced concrete (RC) structures strength- ened with fiber laminate under random loading is important for the repairing or the strengthening of bridges and the safety of the traffic. In this paper, two methods are developed for predicting the fatigue lives of RC structures strengthened with carbon fiber [aminate (CFL) under random loading based on a residual life and a residual strength model. To discuss the efficiency of the model, 12 RC beams strengthened with CFL are tested under random loading by the MTS810 testing system. The predicted residual strength approximately agrees with test results.展开更多
The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Ba...The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.展开更多
In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes...In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes coupling the fatigue damage process and the process of chloride transporting of fly ash mortar. The transport performance of chloride in fly ash mortar specimens was studied under different stress levels. Moreover, the effect of fly ash content on transport performance of chloride ion in mortar was investigated. AE (Acoustic Emission) and SEM were used to acquire the damage distribution of mortar specimens under action of fatigue load. The results show that the diffusion coefficient of chloride in mortar specimens increases with stress level of fatigue loading. The addition of fly ash can mitigate the penetration of chloride ion. The results of microcmck 3D location acquired by AE, accompanied with crack characterizing from SEM, indicate that the damage degree of mortar specimen increases with stress level of fatigue loading. Furthermore, higher damage degree of mortar leads to more the chloride ion content in the sample.展开更多
Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The eff...Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.展开更多
In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission ele...In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.展开更多
The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations devel...The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.展开更多
The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high prec...The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high precision with the maximum error percentage being less than 6%, and it can be easily used to estimate or monitor the surface crack length under fatigue loading both in laboratory and in engineering. It is also quite meanful for nondamage detecting.展开更多
Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored...Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored using stiffness decay. From these tests, it is found that the initial delamination occurs at the free boundary of smooth specimens, or the notch boundary of notched specimens, subjected to the compression-compression cyclic load. A point of view in relation to two-phases of compression fatigue delamination of composites is proposed, namely, compression-compression delamination consists of the delamination formation phase and the delamination propagation, and there is a 'damage transition point' to separate this two-phases. Furthermore, an empirical modulus degradation formula and its parameters fitting method are presented. According to the test data handling results, it is shown that this formula is univocal and can fit the test data conveniently. In addition, two kinds of new anti-buckling devices are designed for these tests. At last, the E-N curves, the D-N curves and the S-N curve of the smooth carbon fiber reinforced composite laminates of T300/648C are determined to predict the fatigue life of the notched composite laminate. And the E-N curve of the notched specimens at the given load ratio R = 10 and minimum load Pmin = -0.45 kN is also measured to verify the estimated result of fatigue life.展开更多
Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg ...Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively.展开更多
With the increasing use of Al-Si-Mg alloys in the automotive industry,the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability.The fatigue characteristics and microcosmic m...With the increasing use of Al-Si-Mg alloys in the automotive industry,the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability.The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research.As low cycle fatigue life and material strengthening behavior are closely related,the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed.Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties.The fatigue life exhibits a stable behavior under multiaxial proportional loadings.The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy(TEM).The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles.Simultaneously,the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings.The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material,which is caused by multiaxial proportional loadings.展开更多
Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plasti...Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.展开更多
Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0...Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.展开更多
基金financially supported by the Natural Science Foundation of Liaoning Province(No.2020-MS-004)the Natural Science Foundation of Liaoning(ZR2021ME241)+1 种基金the National Natural Science Foundation of China(Nos.51601193 and 51701218)the National Key Research and Development Program of China(No.2016YFB0301104)。
文摘The low-cycle fatigue behavior of solutionized(T4)and aged(T6)WE43 magnesium alloys was studied at room temperature.The total strain amplitudes(△ε_(t)/2)were 0.4%,0.5%,0.6%,0.7%and 1.0%.Detailed microstructure evolution was characterized by scanning electron microscope(SEM),electron backscattered diffraction(EBSD)and transmission electron microscopy(TEM).The results showed that plastic strain amplitude decreased with the increasing cycle number in T4 alloy,which is due to the dense persistent slip bands(PSBs)and dynamic precipitates hinderingdislocation slip.In contrast,the plastic strain amplitude increases gradually in T6 alloy,which is attributed to the enhanced activation of pyramidal slip.The low-cycle fatigue life of T6 alloy with larger fatigue ductility coefficient is longer than that of T4 alloy.The Coffin-Manson model can accurately predict the fatigue life of T4 and T6 alloys compared to Jahed-Varvani(JV)energy model.For T4 alloy,the fatigue damage mechanism was dominated by basal slip.For T6 alloy,the enhanced pyramidal slip plays an important role to accommodate plastic deformation.
基金supported by the National Research Foundation(NRF)Grant(No.2019R1A2C1085272)the National Research Council of Science and Technology(NST)Grant(No.CRC-15-06-KIGAM)funded by the Korean government(MSIP,South Korea)
文摘The commercial AZ91 alloy and nonflammable SEN9(AZ91-0.3Ca-0.2Y,wt%)alloy are extruded at 300°C and 400°C.Their microstructure,tensile and compressive properties,and low-cycle fatigue(LCF)properties are investigated,with particular focus on the influence of the extrusion temperature.In the AZ91 and SEN9 materials extruded at 300°C(300-materials),numerous fine Mg_(17)Al_(12)particles are inhomogeneously distributed owing to localized dynamic precipitation during extrusion,unlike those extruded at 400°C(400-materials).These fine particles suppress the coarsening of recrystallized grains,decreasing the average grain size of 300-materials.Although the four extruded materials have considerably different microstructures,the difference in their tensile yield strengths is insignificant because strong grain-boundary hardening and precipitation hardening effects in 300-materials are offset almost completely by a strong texture hardening effect in 400-materials.However,owing to their finer grains and weaker texture,300-materials have higher compressive yield strengths than400-materials.During the LCF tests,{10-12}twinning is activated at lower stresses in 400-materials than in 300-materials.Because the fatigue damage accumulated per cycle is smaller in 400-materials,they have longer fatigue lives than those of 300-materials.A fatigue life prediction model for the investigated materials is established on the basis of the relationship between the total strain energy density(ΔW_(t))and the number of cycles to fatigue failure(N_(f)),and it is expressed through a simple equation(ΔW_(t)=10·N_(f)-0.59).This model enables fatigue life prediction of both the investigated alloys regardless of the extrusion temperature and strain amplitude.
基金Funded by the National Natural Science Foundation of China(No.51878081)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1262)。
文摘A novel high-strength straight-hole recycled pervious concrete(HSRPC)for the secondary highway pavement was prepared in this paper.This study aimed to investigate the effect of porosity(0.126%,0.502%,and 1.13%),vehicle loading stress level(0.5 and 0.8)and service life on the resistance to rainstormbased waterlogging of HSRPC under fatigue loading.The mechanical properties of HSRPC in terms of flexural strength and dynamic elastic modulus were studied.The waterlogging resistance of HSRPC was described by surface water depth and drainage time.The microstructure of HSRPC were observed with scanning electron microscopy(SEM).Results showed that although the dynamic elastic modulus and flexural strength of HSRPC decreased with the increasing number of fatigue loading,the flexural strength of HSRPC was still greater than5 MPa after design service life of 20 years.After 2.5×10^(5)times of fatigue loading,the permeability coefficient of HSRPC with a porosity of 0.502%and 1.13%increased by 18.4%and 22.9%,respectively;while the permeability coefficient of HSRPC with 0.126%porosity dropped to 0.35 mm/s.The maximum surface water depth of HSRPC with a porosity of 0.126%,0.502%,and 1.13%were 8,5 and 4 mm,respectively.SEM results showed that fatigue loading expanded the number and width of cracks around the tiny pores in HSRPC.
基金supported by the Science and Technology Research and Development Foundation of the Ministry of Science and Technology(Grant No.2020YFB1200200ZL)the Scientific Research Program of the Department of Education of Liaoning Province(Grant No.2021LJKZ1298)the Science and Technology Research and Development Foundation of CRRC(Grant No.2021CHA014).
文摘Purpose–In this paper,the C80 special coal gondola car was taken as the subject,and the load test data of the car body at the center plate,side bearing and coupler measured on the dedicated line were broken down to generate the random load component spectrums of the car body under five working conditions,namely expansion,bouncing,rolling,torsion and pitching according to the typical motion attitude of the car body.Design/methodology/approach–On the basis of processing the measured load data,the random load component spectrums were equivalently converted into sinusoidal load component spectrums for bench test based on the principle of pseudo-damage equivalence of load.Relying on the fatigue and vibration test bench of the whole railway wagon,by taking each sinusoidal load component spectrum as the simulation target,the time waveform replication(TWR)iteration technology was adopted to create the drive signal of each loading actuator required for the fatigue test of car body on the bench,and the drive signal was corrected based on the equivalence principle of measured stress fatigue damage to obtain the fatigue test loads of car body under various typical working conditions.Findings–The fatigue test results on the test bench were substantially close to the measured test results on the line.According to the results,the relative error between the fatigue damage of the car body on the test bench and the measured damage on the line was within the range of16.03%–27.14%.Originality/value–The bench test results basically reproduced the fatigue damage of the key parts of the car body on the line.
基金Supported by the National Natural Science Foundation of China(50775182)the Scientific Research Foundation for the Returned Scholars of the Ministry of Education of China~~
文摘An improved understanding of fatigue behavior of a cast aluminum alloy(2-AS5U3G-Y35)in very high cycle regime is developed through the ultrasonic fatigue test in axial and torsion loading.The new developed torsion fatigue system is presented.The effects of loading condition and frequency on the very high cycle fatigue(VHCF)are investigated.The cyclic loading in axial and torsion at 35 Hz and 20 kHz with stress ratio R=-1 is used respectively to demonstrate the effect of loading condition.S-N curves show that the fatigue failure occurs in the range of 105—1010 cycles in axial or torsion loading and the asymptote of S-N curve is inclined,but no fatigue limit exists under the torsion and axial loading condition.The fatigue fracture surface shows that the fatigue crack initiates from the specimen surface subjected to the cyclic torsion loading.It is different from the fatigue fracture characteristic in axial loading in which fatigue crack initiates from subsurface defect in very high cycle regime.The fatigue initiation is on the maximum shear plane,the overall crack orientation is on a typical spiral 45° to the fracture plane and it is the maximum principle stress plane.The clear shear strip in the torsion fatigue fracture surface shows that the torsion fracture is the shear fracture.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.41972283)the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2021zzts0287)the China Scholarship Council(Grant No.202206370109).
文摘In the engineering practices,it is increasingly common to encounter fractured rocks perturbed by temperatures and frequent dynamic loads.In this paper,the dynamic behaviors and fracture characteristics of red sandstone considering temperatures(25℃,200℃,400℃,600℃,and 800℃)and fissure angles(0°,30°,60°,and 90°)were evaluated under constant-amplitude and low-cycle(CALC)impacts actuated by a modified split Hopkinson pressure bar(SHPB)system.Subsequently,fracture morphology and second-order statistics within the grey-level co-occurrence matrix(GLCM)were examined using scanning electron microscopy(SEM).Meanwhile,the deep analysis and discussion of the mechanical response were conducted through the synchronous thermal analyzer(STA)test,numerical simulations,one-dimensional stress wave theory,and material structure.The multiple regression models between response variables and interactive effects of independent variables were established using the response surface method(RSM).The results demonstrate the fatigue strength and life diminish as temperatures rise and increase with increasing fissure angles,while the strain rate exhibits an inverse behavior.Furthermore,the peak stress intensification and strain rate softening observed during CALC impact exhibit greater prominence at increased fissure angles.The failure is dominated by tensile damage with concise evolution paths and intergranular cracks as well as the compressor-crushed zone which may affect the failure mode after 400℃.The second-order statistics of GLCM in SEM images exhibit a considerable dependence on the temperatures.Also,thermal damage dominated by thermal properties controls the material structure and wave impedance and eventually affects the incident wave intensity.The tensile wave reflected from the fissure surface is the inherent mechanism responsible for the angle effect exhibited by the fatigue strength and life.Ultimately,the peak stress intensification and strain rate softening during impact are determined by both the material structure and compaction governed by thermal damage and tensile wave.
文摘Heterogeneous brittle geomaterials are highly susceptible to cyclic loads.They contain inherent flaws and cracks that grow under fatigue loads and lead to failure.This study presents a numerical model for analyzing fatigue in these materials based on the two-dimensional(2D)boundary element method and linear elastic fracture mechanics.The process is formulated by coupling the displacement discontinuity method with the incorporation technique of dissimilar regions and the governing equations of fatigue.The heterogeneous media are assumed to consist of materials with different properties,and the interfaces are assumed to be completely bonded.In addition,the domains include multiple cracks exposed to constant and variable amplitude cyclic loads.The stress intensity factor is a crucial parameter in fatigue analysis,which is determined using the displacement field around crack tips.An incremental crack growth scheme is applied to calculating the fatigue life.The growth rate values are employed to estimate the length of crack extension when there are multiple cracks.The interaction between cracks is considered,which also includes the coalescence phenomenon.Finally,various structures under different cyclic loads are examined to evaluate the accuracy of this method.The results demonstrate the efficiency of the proposed approach in modeling fatigue crack growth and life estimation.The behavior of life curves for the heterogeneous domain was as expected.These curves illustrate the breakpoints caused by utilizing discrete incremental life equations.At these points,the trend of the curves changed with the material properties and fatigue characteristics of the new material around the crack tips.
文摘A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was possible to consider the influence of both creep-fatigue interaction and multiaxial stress state on fatigue life. In order to predict the combined axial-torsional fatigue life the damage under combined loading was defined as linear summation of the damages under axial loading and torsional loading. Axial-torsional creep-fatigue tests were carried out using tubular specimens of 316LC austenitic stainless steel and the ferritic rotor steel. This rotor steel was developed for the permanent magnet type eddy current retarder in heavy trucks. Experimentally obtained lives of both steels were well corresponded with the lives predicted by the proposed method. It was found that the proposed method was effective in multiaxial fatigue life evaluation under proportional creep-fatigue loadings.
基金supported by the National Natural Science Foundation of China(No.10672060)the Guangdong Provincial Nature Science Foundation of China(No.07006538).
文摘The investigation on fatigue lives of reinforced concrete (RC) structures strength- ened with fiber laminate under random loading is important for the repairing or the strengthening of bridges and the safety of the traffic. In this paper, two methods are developed for predicting the fatigue lives of RC structures strengthened with carbon fiber [aminate (CFL) under random loading based on a residual life and a residual strength model. To discuss the efficiency of the model, 12 RC beams strengthened with CFL are tested under random loading by the MTS810 testing system. The predicted residual strength approximately agrees with test results.
基金the Doctoral Authorization Point Foundation of China(No.30300078)
文摘The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus. The relationship between the residual secant elastic modulus and number of cycles was also established.
基金Funded by the Scientific Research Foundation of Graduate School Southeast University(No.YBJJ1129)the National Natural Science Foundation of China(No. 51078081)the National Basic Research Program of China("973"Project)(No. 2009CB326200)
文摘In order to study the chloride ion transport performance in fly ash addition mortar, a new method, in which the fatigue loading and chloride diffusion are undertaken simultaneously, was developed. This method realizes coupling the fatigue damage process and the process of chloride transporting of fly ash mortar. The transport performance of chloride in fly ash mortar specimens was studied under different stress levels. Moreover, the effect of fly ash content on transport performance of chloride ion in mortar was investigated. AE (Acoustic Emission) and SEM were used to acquire the damage distribution of mortar specimens under action of fatigue load. The results show that the diffusion coefficient of chloride in mortar specimens increases with stress level of fatigue loading. The addition of fly ash can mitigate the penetration of chloride ion. The results of microcmck 3D location acquired by AE, accompanied with crack characterizing from SEM, indicate that the damage degree of mortar specimen increases with stress level of fatigue loading. Furthermore, higher damage degree of mortar leads to more the chloride ion content in the sample.
基金The authors would like to thank the editors and the anonymous reviewers for their helpful and constructive comments.This study was supported by National Key Technologies Research&Development Program(Grant No.2018YFC0808402)State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK1824)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-20-004A2).
文摘Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests.
基金Project(2015TP1035)supported by the Science and Technology Planning Project of Hunan Province,ChinaProject(531107040183)supported by the Fundamental Research Funds for the Central Universities,China
文摘In as-cast Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr(mole fraction,%)alloy,lamellar microstructures that extend from grain boundaries to the interior ofα-Mg grains are identified as clusters ofγ′using a scanning transmission electron microscope equipped with a high-angle annular dark-field detector.Under a total strain-controlled low-cyclic loading at573K,the mechanical response and failure mechanism of Mg?2.1Gd?1.1Y?0.82Zn?0.11Zr alloy(T6peak-aging heat treatment)were investigated.Results show that the alloy exhibits cyclic softening response at diverse total strain amplitudes and573K.The experimental observations using scanning electron microscopy show that the micro-cracks initiate preferentially at the interface between long-period stacking order structures andα-Mg matrix and extend along the basal plane ofα-Mg.The massive long-period stacking order structures distributed at grain boundaries impede the transgranular propagation of cracks.
基金This work was supported by the National Natural Science Foundation of China(No.52104125)the funding of State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(SKLGDUEK2133)+1 种基金the funding of Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2020-02)the Fundamental Research Funds for the Central Universities.
文摘The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.
文摘The calibration curves obtained using strain gages are used to predict surface crack length on plate specimen subjected to 4-point bending fatigue loading. The results shows that the proposed procedure is of high precision with the maximum error percentage being less than 6%, and it can be easily used to estimate or monitor the surface crack length under fatigue loading both in laboratory and in engineering. It is also quite meanful for nondamage detecting.
基金National Natural Science F oundation of China !( No.1980 2 0 0 1)
文摘Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored using stiffness decay. From these tests, it is found that the initial delamination occurs at the free boundary of smooth specimens, or the notch boundary of notched specimens, subjected to the compression-compression cyclic load. A point of view in relation to two-phases of compression fatigue delamination of composites is proposed, namely, compression-compression delamination consists of the delamination formation phase and the delamination propagation, and there is a 'damage transition point' to separate this two-phases. Furthermore, an empirical modulus degradation formula and its parameters fitting method are presented. According to the test data handling results, it is shown that this formula is univocal and can fit the test data conveniently. In addition, two kinds of new anti-buckling devices are designed for these tests. At last, the E-N curves, the D-N curves and the S-N curve of the smooth carbon fiber reinforced composite laminates of T300/648C are determined to predict the fatigue life of the notched composite laminate. And the E-N curve of the notched specimens at the given load ratio R = 10 and minimum load Pmin = -0.45 kN is also measured to verify the estimated result of fatigue life.
文摘Fatigue failure is one of the main failure forms of Al-Si-Cu-Mg aluminum alloys. To feature their mechanical aspect of fatigue behavior, the low-cycle fatigue behavior of permanent mold cast and die-cast AI-Si- Cu-Mg alloys at room temperature was investigated. The experimental results show that both permanent mold cast and die-cast AI-Si-Cu-Mg alloys mainly exhibit cyclic strain hardening. At the same total strain amplitude, the diecast AI-Si-Cu-Mg alloy shows higher cyclic deformation resistance and longer fatigue life than does the permanent mold cast AI-Si-Cu-Mg alloy. The relationship between both elastic and plastic strain amplitudes with reversals to failure shows a monotonic linear behavior, and can be described by the Basquin and Coffin-Manson equations, respectively.
基金supported by the Major State Basic Research and Development Program of China (No.2007CB714704)the Na-tional Natural Science Foundation of China (No.50771073)the Program for New Century Excellent Talents in Chinese Universities (No.NCET-05-0388)
文摘With the increasing use of Al-Si-Mg alloys in the automotive industry,the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability.The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research.As low cycle fatigue life and material strengthening behavior are closely related,the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed.Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties.The fatigue life exhibits a stable behavior under multiaxial proportional loadings.The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy(TEM).The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles.Simultaneously,the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings.The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material,which is caused by multiaxial proportional loadings.
文摘Fatigue damage of materials includes static damage and cyclic damage.Static damage is a ratio of the plastic energy in first static loading to the statictoughness, while cyclic damage is the ratio of the cyclic plastic hysteresis energy to thefatigue toughness. In the calculation, cyclic hardening (or softening) of a material istaken into account, which results in the increase (or decrease) of the yield stress. Forsimplification, it is assumed that stress and strain in cyclic loading vary in accordancewith the hysteresis loop. Fatigue toughness of a material can be detennined bysymmetric cyclic stress controlled fatigue test. A method, rational and convenient forengineering, is proposed to estimate the fatigue life under random loading based onplastic hysteresis energy theorem. Preliminary verification by test is satisfactory.
文摘Experiments were made on plain concrete subjected to triaxial static loading and constant amplitude compressive fatigue loading with a constant lateral pressure in two directions. The initial confining pressure was 0, 0.1 f c , 0.25 f c and 0.4 f c , respectively, for the static test, and 0.1 f c and 0.25 f c for the fatigue test. Based on the triaxial compressive constitutive behavior of concrete, the inflexion of confining pressure evolution was chosen to be the fatigue damage criterion during the test. The rule of evolution of longitudinal maximum and minimum strains, longitudinal cyclic modulus and damage were recorded and analyzed. According to the Fardis Chen criterion model and the concept of equivalent fatigue life and equivalent stress level, a unified S N curve for multi axial compressive fatigue loading was proposed. Thus, the fatigue strength factors for different fatigue loading cases can be obtained. The present investigation provides information for the fatigue design of concrete structures.